ﻻ يوجد ملخص باللغة العربية
We propose a two-dimensional non-Hermitian Chern insulator with inversion symmetry, which is anisotropic and has staggered gain and loss in both x and y directions. In this system, conventional bulk-boundary correspondence holds. The Chern number is a topological invariant that accurately predicts the topological phase transition and the existence of helical edge states in the topologically nontrivial gapped phase. In the gapless phase, the band touching points are isolated and protected by the symmetry. The degenerate points alter the system topology, and the exceptional points can destroy the existence of helical edge states. Topologically protected helical edge states exist in the gapless phase for the system under open boundary condition in one direction, which are predicted by the winding number associated with the vector field of average values of Pauli matrices. The winding number also identifies the detaching points between the edge states and the bulk states in the energy bands. The non-Hermiticity also supports a topological phase with zero Chern number, where a pair of in-gap helical edge states exists. Our findings provide insights into the symmetry protected non-Hermitian topological insulators.
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs havin
In recent theoretical and experimental investigations, researchers have linked the low-energy field theory of a Weyl semimetal gapped with a charge-density wave (CDW) to high-energy theories with axion electrodynamics. However, it remains an open que
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulator
Topology plays a central role in nearly all disciplines of physics, yet its applications have so far been restricted to closed, lossless systems in thermodynamic equilibrium. Given that many physical systems are open and may include gain and loss mec
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, t