ﻻ يوجد ملخص باللغة العربية
The aim of this study is to generate maps of the hard X-ray emission produced by energetic electrons in a solar flare and compare them with observations. The ultimate goal is to test the viability of the combined MHD/test-particle approach for data-driven modelling of active events in the solar corona and their impact on the heliosphere. Based on an MHD model of X-class solar flare observed on the 8th of September 2017, we calculate trajectories of a large number of electrons and protons using the relativistic guiding-centre approach. Using the obtained particle trajectories, we deduce the spatial and energy distributions of energetic electrons and protons, and calculate bremsstrahlung hard X-ray emission using the thin target approximation. Our approach predicts some key characteristics of energetic particles in the considered flare, including the size and location of the acceleration region, energetic particle trajectories and energy spectra. Most importantly, the hard X-ray bremsstrahlung intensity maps predicted by the model are in a good agreement with those observed by RHESSI. Furthermore, the locations of proton and electron precipitation appear to be close to the sources of helioseismic response detected in this flare. Therefore, the adopted approach can be used for observationally-driven modelling of individual solar flares, including manifestations of energetic particles in the corona, as well as inner heliosphere.
A common feature of electromagnetic emission from solar flares is the presence of intensity pulsations that vary as a function of time. Known as quasi-periodic pulsations (QPPs), these variations in flux appear to include periodic components and char
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model o
Plasma turbulence is thought to be associated with various physical processes involved in solar flares, including magnetic reconnection, particle acceleration and transport. Using Ramaty High Energy Solar Spectroscopic Imager ({it RHESSI}) observatio
We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron
The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. (2006) proposed a mechanism for accelerating electrons in contracting magnet