ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

99   0   0.0 ( 0 )
 نشر من قبل Silvina Guidoni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. (2006) proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets. We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare current sheet. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions.



قيم البحث

اقرأ أيضاً

The acceleration of charged particles in magnetized plasmas is considered during turbulent multi-island magnetic reconnection. The particle acceleration model is constructed for an ensemble of islands which produce adiabatic compression of the partic les. The model takes into account the statistical fluctuations in the compression rate experienced by the particles during their transport in the acceleration region. The evolution of the particle distribution function is described as a simultaneous first and second-order Fermi acceleration process. While the efficiency of the first-order process is controlled by the average rate of compression, the second order process involves the variance in the compression rate. Moreover, the acceleration efficiency associated with the second-order process involves both the Eulerian properties of the compression field and the Lagrangian properties of the particles. The stochastic contribution to the acceleration is non-resonant and can dominate the systematic part in the case of a large variance in the compression rate. The model addresses the role of the second-order process, how the latter can be related to the large-scale turbulent transport of particles and explains some features of the numerical simulations of particle acceleration by multi-island contraction during magnetic reconnection.
75 - Ting Li , Anqin Chen , Yijun Hou 2021
With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $geq$C5.0 during 2010$-$2019. We carry out the first statistical study that investigates the flare-coronal mass ejections (CMEs) association rate as function of the flare intensity and the AR characteristics that produces the flare, in terms of its total unsigned magnetic flux ($Phi$$_{AR}$). Our results show that the slope of the flare-CME association rate with flare intensity reveals a steep monotonic decrease with $Phi$$_{AR}$. This means that flares of the same GOES class but originating from an AR of larger $Phi$$_{AR}$, are much more likely confined. Based on an AR flux as high as 1.0$times$$10^{24}$ Mx for solar-type stars, we estimate that the CME association rate in X100-class ``superflares is no more than 50%. For a sample of 132 flares $geq$M2.0 class, we measure three non-potential parameters including the length of steep gradient polarity inversion line (L$_{SGPIL}$), the total photospheric free magnetic energy (E$_{free}$) and the area with large shear angle (A$_{Psi}$). We find that confined flares tend to have larger values of L$_{SGPIL}$, E$_{free}$ and A$_{Psi}$ compared to eruptive flares. Each non-potential parameter shows a moderate positive correlation with $Phi$$_{AR}$. Our results imply that $Phi$$_{AR}$ is a decisive quantity describing the eruptive character of a flare, as it provides a global parameter relating to the strength of the background field confinement.
We investigate the coronal magnetic energy and helicity budgets of ten solar ARs, around the times of large flares. In particular, we are interested in a possible relation of the derived quantities to the particular type of the flares that the AR pro duces, i.e., whether they are associated with a CME or they are confined. Using an optimization approach, we employ time series of 3D nonlinear force-free magnetic field models of ten ARs, covering a time span of several hours around the time of occurrence of large solar flares (GOES class M1.0 and larger). We subsequently compute the 3D magnetic vector potentials associated to the model 3D coronal magnetic field using a finite-volume method. This allows us to correspondingly compute the coronal magnetic energy and helicity budgets, as well as related (intensive) quantities such as the relative contribution of free magnetic energy, $E_{mathrm{F}}/{E}$ (energy ratio), the fraction of non-potential (current-carrying) helicity, $|H_{mathrm{J}}|/|{H_{V}}|$ (helicity ratio), and the normalized current-carrying helicity, $|H_{mathrm{J}}|/{phi^{prime}}^{2}$. The total energy and helicity budgets of flare-productive ARs (extensive parameters) cover a broad range of magnitudes, with no obvious relation to the eruptive potential of the individual ARs, i.e., whether or not a CME is produced in association with the flare. The intensive eruptivity proxies, $E_{mathrm{F}}/{E}$ and $|H_{mathrm{J}}|/|{H_{V}}|$, and $|H_{mathrm{J}}|/{phi^{prime}}^{2}$, however, seem to be distinctly different for ARs that produced CME-associated large flares compared to those which produced confined flares. For the majority of ARs in our sample, we are able to identify characteristic pre-flare magnitudes of the intensive quantities, clearly associated to subsequent CME-productivity.
In this article, we review some key aspects of a multi-wavelength flare which have essentially contributed to form a standard flare model based on the magnetic reconnection. The emphasis is given on the recent observations taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) on the X-ray emission originating from different regions of the coronal loops. We also briefly summarize those observations which do not seem to accommodate within the canonical flare picture and discuss the challenges for future investigations.
We compare the coronal magnetic energy and helicity of two solar active regions (ARs), prolific in major eruptive (AR~11158) and confined (AR~12192) flaring, and analyze the potential of deduced proxies to forecast upcoming flares. Based on nonlinear force-free (NLFF) coronal magnetic field models with a high degree of solenoidality, and applying three different computational methods to investigate the coronal magnetic helicity, we are able to draw conclusions with a high level of confidence. Based on real observations of two solar ARs we checked trends regarding the potential eruptivity of the active-region corona, as suggested earlier in works that were based on numerical simulations, or solar observations. Our results support that the ratio of current-carrying to total helicity, $|H_mathrm{J}|/|H_mathrm{V}|$, shows a strong ability to indicate the eruptive potential of a solar AR. However, $|H_mathrm{J}|/|H_mathrm{V}|$ seems not to be indicative for the magnitude or type of an upcoming flare (confined or eruptive). Interpreted in context with earlier observational studies, our findings furthermore support that the total relative helicity normalized to the magnetic flux at the NLFF models lower boundary, $H_mathrm{V}/phi^2$, represents no indicator for the eruptivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا