ﻻ يوجد ملخص باللغة العربية
Some of the key questions of interest during the COVID-19 pandemic (and all outbreaks) include: where did the disease start, how is it spreading, who is at risk, and how to control the spread. There are a large number of complex factors driving the spread of pandemics, and, as a result, multiple modeling techniques play an increasingly important role in shaping public policy and decision making. As different countries and regions go through phases of the pandemic, the questions and data availability also changes. Especially of interest is aligning model development and data collection to support response efforts at each stage of the pandemic. The COVID-19 pandemic has been unprecedented in terms of real-time collection and dissemination of a number of diverse datasets, ranging from disease outcomes, to mobility, behaviors, and socio-economic factors. The data sets have been critical from the perspective of disease modeling and analytics to support policymakers in real-time. In this overview article, we survey the data landscape around COVID-19, with a focus on how such datasets have aided modeling and response through different stages so far in the pandemic. We also discuss some of the current challenges and the needs that will arise as we plan our way out of the pandemic.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i
We show that the COVID-19 pandemic under social distancing exhibits universal dynamics. The cumulative numbers of both infections and deaths quickly cross over from exponential growth at early times to a longer period of power law growth, before even
We study the impact on the epidemiological dynamics of a class of restrictive measures that are aimed at reducing the number of contacts of individuals who have a higher risk of being infected with a transmittable disease. Such measures are currently
We here propose to model active and cumulative cases data from COVID-19 by a continuous effective model based on a modified diffusion equation under Lifshitz scaling with a dynamic diffusion coefficient. The proposed model is rich enough to capture d
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no reco