ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusive process under Lifshitz scaling and pandemic scenarios

136   0   0.0 ( 0 )
 نشر من قبل Francisco A. Brito
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We here propose to model active and cumulative cases data from COVID-19 by a continuous effective model based on a modified diffusion equation under Lifshitz scaling with a dynamic diffusion coefficient. The proposed model is rich enough to capture different aspects of a complex virus diffusion as humanity has been recently facing. The model being continuous it is bound to be solved analytically and/or numerically. So, we investigate two possible models where the diffusion coefficient associated with possible types of contamination are captured by some specific profiles. The active cases curves here derived were able to successfully describe the pandemic behavior of Germany and Spain. Moreover, we also predict some scenarios for the evolution of COVID-19 in Brazil. Furthermore, we depicted the cumulative cases curves of COVID-19, reproducing the spreading of the pandemic between the cities of S~ao Paulo and S~ao Jose dos Campos, Brazil. The scenarios also unveil how the lockdown measures can flatten the contamination curves. We can find the best profile of the diffusion coefficient that better fit the real data of pandemic.



قيم البحث

اقرأ أيضاً

We study the impact on the epidemiological dynamics of a class of restrictive measures that are aimed at reducing the number of contacts of individuals who have a higher risk of being infected with a transmittable disease. Such measures are currently either implemented or at least discussed in numerous countries worldwide to ward off a potential new wave of COVID-19 across Europe. They come in the form of Health Passes (HP), which grant full access to public life only to individuals with a certificate that proves that they have either been fully vaccinated, have recovered from a previous infection or have recently tested negative to SARS-Cov-19 . We develop both a compartmental model as well as an epidemic Renormalisation Group approach, which is capable of describing the dynamics over a longer period of time, notably an entire epidemiological wave. Introducing differe
Some of the key questions of interest during the COVID-19 pandemic (and all outbreaks) include: where did the disease start, how is it spreading, who is at risk, and how to control the spread. There are a large number of complex factors driving the s pread of pandemics, and, as a result, multiple modeling techniques play an increasingly important role in shaping public policy and decision making. As different countries and regions go through phases of the pandemic, the questions and data availability also changes. Especially of interest is aligning model development and data collection to support response efforts at each stage of the pandemic. The COVID-19 pandemic has been unprecedented in terms of real-time collection and dissemination of a number of diverse datasets, ranging from disease outcomes, to mobility, behaviors, and socio-economic factors. The data sets have been critical from the perspective of disease modeling and analytics to support policymakers in real-time. In this overview article, we survey the data landscape around COVID-19, with a focus on how such datasets have aided modeling and response through different stages so far in the pandemic. We also discuss some of the current challenges and the needs that will arise as we plan our way out of the pandemic.
In this paper, we deal with the study of the impact of nationwide measures COVID-19 anti-pandemic. We drive two processes to analyze COVID-19 data considering measures. We associate level of nationwide measure with value of parameters related to the contact rate of the model. Then a parametric solve, with respect to those parameters of measures, shows different possibilities of the evolution of the pandemic. Two machine learning tools are used to forecast the evolution of the pandemic. Finally, we show comparison between deterministic and two machine learning tools.
The development and authorization of COVID-19 vaccines has provided the clearest path forward to eliminate community spread hence end the ongoing SARS-CoV-2 pandemic. However, the limited pace at which the vaccine can be administered motivates the qu estion, to what extent must we continue to adhere to social intervention measures such as mask wearing and social distancing? To address this question, we develop a mathematical model of COVID-19 spread incorporating both vaccine dynamics and socio-epidemiological parameters. We use this model to study two important measures of disease control and eradication, the effective reproductive number $R_t$ and the peak intensive care unit (ICU) caseload, over three key parameters: social measure adherence, vaccination rate, and vaccination coverage. Our results suggest that, due to the slow pace of vaccine administration, social measures must be maintained by a large proportion of the population until a sufficient proportion of the population becomes vaccinated for the pandemic to be eradicated. By contrast, with reduced adherence to social measures, hospital ICU cases will greatly exceed capacity, resulting in increased avoidable loss of life. These findings highlight the complex interplays involved between vaccination and social protective measures, and indicate the practical importance of continuing with extent social measures while vaccines are scaled up to allow the development of the herd immunity needed to end or control SARS-CoV-2 sustainably.
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no reco very over time, and allows for the transmission-dynamics equations to be solved analytically. The D-model can be extended to describe various focuses of infection, which may account for the original pandemic (D1), the lockdown (D2) and other effects (Dn). The evolution of the COVID-19 pandemic in several countries (China, Spain, Italy, France, UK, Iran, USA and Germany) shows a similar behavior in concord with the D-model trend, characterized by a rapid increase of death cases followed by a slow decline, which are affected by the earliness and efficiency of the lockdown effect. These results are in agreement with more accurate calculations using the extended SIR model with a parametrized solution and more sophisticated Monte Carlo grid simulations, which predict similar trends and indicate a common evolution of the pandemic with universal parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا