ترغب بنشر مسار تعليمي؟ اضغط هنا

Listen, Understand and Translate: Triple Supervision Decouples End-to-end Speech-to-text Translation

191   0   0.0 ( 0 )
 نشر من قبل Qianqian Dong
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

An end-to-end speech-to-text translation (ST) takes audio in a source language and outputs the text in a target language. Existing methods are limited by the amount of parallel corpus. Can we build a system to fully utilize signals in a parallel ST corpus? We are inspired by human understanding system which is composed of auditory perception and cognitive processing. In this paper, we propose Listen-Understand-Translate, (LUT), a unified framework with triple supervision signals to decouple the end-to-end speech-to-text translation task. LUT is able to guide the acoustic encoder to extract as much information from the auditory input. In addition, LUT utilizes a pre-trained BERT model to enforce the upper encoder to produce as much semantic information as possible, without extra data. We perform experiments on a diverse set of speech translation benchmarks, including Librispeech English-French, IWSLT English-German and TED English-Chinese. Our results demonstrate LUT achieves the state-of-the-art performance, outperforming previous methods. The code is available at https://github.com/dqqcasia/st.



قيم البحث

اقرأ أيضاً

This paper proposes a first attempt to build an end-to-end speech-to-text translation system, which does not use source language transcription during learning or decoding. We propose a model for direct speech-to-text translation, which gives promisin g results on a small French-English synthetic corpus. Relaxing the need for source language transcription would drastically change the data collection methodology in speech translation, especially in under-resourced scenarios. For instance, in the former project DARPA TRANSTAC (speech translation from spoken Arabic dialects), a large effort was devoted to the collection of speech transcripts (and a prerequisite to obtain transcripts was often a detailed transcription guide for languages with little standardized spelling). Now, if end-to-end approaches for speech-to-text translation are successful, one might consider collecting data by asking bilingual speakers to directly utter speech in the source language from target language text utterances. Such an approach has the advantage to be applicable to any unwritten (source) language.
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multih ead attention to end-to-end simultaneous speech translation by introducing a pre-decision module. A detailed analysis is provided on the latency-quality trade-offs of combining fixed and flexible pre-decision with fixed and flexible policies. We also design a novel computation-aware latency metric, adapted from Average Lagging.
This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu ilt. In this work, wefocus on developing a unified model (UniST) which supports streaming and non-streaming ST from the perspective of fundamental components, including training objective, attention mechanism and decoding policy. Experiments on the most popular speech-to-text translation benchmark dataset, MuST-C, show that UniST achieves significant improvement for non-streaming ST, and a better-learned trade-off for BLEU score and latency metrics for streaming ST, compared with end-to-end baselines and the cascaded models. We will make our codes and evaluation tools publicly available.
End-to-end Speech-to-text Translation (E2E-ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique termed Masked Acoustic Modeling (MAM), not only provides an alternative solution to improving E2E-ST, but also can perform pre-training on any acoustic signals (including non-speech ones) without annotation. We conduct our experiments over 8 different translation directions. In the setting without using any transcriptions, our technique achieves an average improvement of +1.1 BLEU, and +2.3 BLEU with MAM pre-training. Pre-training of MAM with arbitrary acoustic signals also has an average improvement with +1.6 BLEU for those languages. Compared with ASR multi-task learning solution, which replies on transcription during training, our pre-trained MAM model, which does not use transcription, achieves similar accuracy.
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2020, offline speech translation and simultaneous speech translation. ON-TRAC Consortium is composed of re searchers from three French academic laboratories: LIA (Avignon Universite), LIG (Universite Grenoble Alpes), and LIUM (Le Mans Universite). Attention-based encoder-decoder models, trained end-to-end, were used for our submissions to the offline speech translation track. Our contributions focused on data augmentation and ensembling of multiple models. In the simultaneous speech translation track, we build on Transformer-based wait-k models for the text-to-text subtask. For speech-to-text simultaneous translation, we attach a wait-k MT system to a hybrid ASR system. We propose an algorithm to control the latency of the ASR+MT cascade and achieve a good latency-quality trade-off on both subtasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا