ﻻ يوجد ملخص باللغة العربية
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2020, offline speech translation and simultaneous speech translation. ON-TRAC Consortium is composed of researchers from three French academic laboratories: LIA (Avignon Universite), LIG (Universite Grenoble Alpes), and LIUM (Le Mans Universite). Attention-based encoder-decoder models, trained end-to-end, were used for our submissions to the offline speech translation track. Our contributions focused on data augmentation and ensembling of multiple models. In the simultaneous speech translation track, we build on Transformer-based wait-k models for the text-to-text subtask. For speech-to-text simultaneous translation, we attach a wait-k MT system to a hybrid ASR system. We propose an algorithm to control the latency of the ASR+MT cascade and achieve a good latency-quality trade-off on both subtasks.
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multih
This paper describes the submission of the NiuTrans end-to-end speech translation system for the IWSLT 2021 offline task, which translates from the English audio to German text directly without intermediate transcription. We use the Transformer-based
This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu
Boosted by the simultaneous translation shared task at IWSLT 2020, promising end-to-end online speech translation approaches were recently proposed. They consist in incrementally encoding a speech input (in a source language) and decoding the corresp
An end-to-end speech-to-text translation (ST) takes audio in a source language and outputs the text in a target language. Existing methods are limited by the amount of parallel corpus. Can we build a system to fully utilize signals in a parallel ST c