ﻻ يوجد ملخص باللغة العربية
End-to-end Speech-to-text Translation (E2E-ST), which directly translates source language speech to target language text, is widely useful in practice, but traditional cascaded approaches (ASR+MT) often suffer from error propagation in the pipeline. On the other hand, existing end-to-end solutions heavily depend on the source language transcriptions for pre-training or multi-task training with Automatic Speech Recognition (ASR). We instead propose a simple technique to learn a robust speech encoder in a self-supervised fashion only on the speech side, which can utilize speech data without transcription. This technique termed Masked Acoustic Modeling (MAM), not only provides an alternative solution to improving E2E-ST, but also can perform pre-training on any acoustic signals (including non-speech ones) without annotation. We conduct our experiments over 8 different translation directions. In the setting without using any transcriptions, our technique achieves an average improvement of +1.1 BLEU, and +2.3 BLEU with MAM pre-training. Pre-training of MAM with arbitrary acoustic signals also has an average improvement with +1.6 BLEU for those languages. Compared with ASR multi-task learning solution, which replies on transcription during training, our pre-trained MAM model, which does not use transcription, achieves similar accuracy.
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multih
Subword units are commonly used for end-to-end automatic speech recognition (ASR), while a fully acoustic-oriented subword modeling approach is somewhat missing. We propose an acoustic data-driven subword modeling (ADSM) approach that adapts the adva
This paper proposes a first attempt to build an end-to-end speech-to-text translation system, which does not use source language transcription during learning or decoding. We propose a model for direct speech-to-text translation, which gives promisin
An end-to-end speech-to-text translation (ST) takes audio in a source language and outputs the text in a target language. Existing methods are limited by the amount of parallel corpus. Can we build a system to fully utilize signals in a parallel ST c
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representat