ﻻ يوجد ملخص باللغة العربية
In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are different from the multi-dimensional Riemann problems widely studied in the literature. Our computations provide numerical evidence of the existence of initial value problems with multiple solutions, thus revealing a fundamental obstruction toward the well-posedness of the governing equations. The compressible Euler equations are solved using the positivity-preserving discontinuous Galerkin method.
In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the a
On the set of dissipative solutions to the multi-dimensional isentropic Euler equations we introduce a quasi-order by comparing the acceleration at all times. This quasi-order is continuous with respect to a suitable notion of convergence of dissipat
We consider admissible weak solutions to the compressible Euler system with source terms, which include rotating shallow water system and the Euler system with damping as special examples. In the case of anti-symmetric sources such as rotations, for
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a
It is well-known that a Leray-Hopf weak solution in $L^4 (0,T; L^4(Omega))$ for the incompressible Navier-Stokes system is persistence of energy due to Lions [19]. In this paper, it is shown that Lionss condition for energy balance is also valid for