ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal acceleration for the multi-dimensional isentropic Euler equations

65   0   0.0 ( 0 )
 نشر من قبل Michael Westdickenberg
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

On the set of dissipative solutions to the multi-dimensional isentropic Euler equations we introduce a quasi-order by comparing the acceleration at all times. This quasi-order is continuous with respect to a suitable notion of convergence of dissipative solutions. We establish the existence of minimal elements. Minimizing the acceleration amounts to selecting dissipative solutions that are as close to being a weak solution as possible.



قيم البحث

اقرأ أيضاً

In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the a rtificial viscosity approximations up to the origin, removing previous restrictions on the admissible test functions and ruling out formation of an artificial boundary layer at the origin. The uniform estimates may be of independent interest as concerns the possible rate of blow-up of the density and velocity at the origin for spherically symmetric flows.
In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are d ifferent from the multi-dimensional Riemann problems widely studied in the literature. Our computations provide numerical evidence of the existence of initial value problems with multiple solutions, thus revealing a fundamental obstruction toward the well-posedness of the governing equations. The compressible Euler equations are solved using the positivity-preserving discontinuous Galerkin method.
Considering the isentropic Euler equations of compressible fluid dynamics with geometric effects included, we establish the existence of entropy solutions for a large class of initial data. We cover fluid flows in a nozzle or in spherical symmetry wh en the origin r=0 is included. These partial differential equations are hyperbolic, but fail to be strictly hyperbolic when the fluid mass density vanishes and vacuum is reached. Furthermore, when geometric effects are taken into account, the sup-norm of solutions can not be controlled since there exist no invariant regions. To overcome these difficulties and to establish an existence theory for solutions with arbitrarily large amplitude, we search for solutions with finite mass and total energy. Our strategy of proof takes advantage of the particular structure of the Euler equations, and leads to a versatile framework covering general compressible fluid problems. We establish first higher-integrability estimates for the mass density and the total energy. Next, we use arguments from the theory of compensated compactness and Young measures, extended here to sequences of solutions with finite mass and total energy. The third ingredient of the proof is a characterization of the unbounded support of entropy admissible Young measures. This requires the study of singular products involving measures and principal values.
76 - Francois Hamel 2019
In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as well as in exterior circular domains, in punctured disks and in the punctured plane. We always assume rigid wall boundary conditions. We prove that, if the flow does not have any stagnation point, and if it satisfies further conditions at infinity in the case of an exterior domain or at the center in the case of a punctured disk or the punctured plane, then the flow is circular, namely the streamlines are concentric circles. In other words, the flow then inherits the radial symmetry of the domain. The proofs are based on the study of the trajectories of the flow and the orthogonal trajectories of the gradient of the stream function, which is shown to satisfy a semilinear elliptic equation in the whole domain. In exterior or punctured domains, the method of moving planes is applied to some almost circular domains located between some streamlines of the flow, and the radial symmetry of the stream function is shown by a limiting argument. The paper also contains two Serrin-type results in simply or doubly connected bounded domains with free boundaries. Here, the flows are further assumed to have constant norm on each connected component of the boundary and the domains are then proved to be disks or annuli.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا