ﻻ يوجد ملخص باللغة العربية
We consider admissible weak solutions to the compressible Euler system with source terms, which include rotating shallow water system and the Euler system with damping as special examples. In the case of anti-symmetric sources such as rotations, for general piecewise Lipschitz initial densities and some suitably constructed initial momentum, we obtain infinitely many global admissible weak solutions. Furthermore, we construct a class of finite-states admissible weak solutions to the Euler system with anti-symmetric sources. Under the additional smallness assumption on the initial densities, we also obtain multiple global-in-time admissible weak solutions for more general sources including damping. The basic framework are based on the convex integration method developed by De~Lellis and Sz{e}kelyhidi cite{dLSz1,dLSz2} for the Euler system. One of the main ingredients of this paper is the construction of specified localized plane wave perturbations which are compatible with a given source term.
In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are d
We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary compressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine solutions of the flow.
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence
We prove that for the two-dimensional steady complete compressible Euler system, with given uniform upcoming supersonic flows, the following three fundamental flow patterns (special solutions) in gas dynamics involving transonic shocks are all unique
Analytic solutions for Burgers equations with source terms, possibly stiff, represent an important element to assess numerical schemes. Here we present a procedure, based on the characteristic technique to obtain analytic solutions for these equations with smooth initial conditions.