ﻻ يوجد ملخص باللغة العربية
When $mathbb C$ is a semi-abelian category, it is well known that the category $mathsf{Grpd}(mathbb C)$ of internal groupoids in $mathbb C$ is again semi-abelian. The problem of determining whether the same kind of phenomenon occurs when the property of being semi-abelian is replaced by the one of being action representable (in the sense of Borceux, Janelidze and Kelly) turns out to be rather subtle. In the present article we give a sufficient condition for this to be true: in fact we prove that the category $mathsf{Grpd}(mathbb C)$ is a semi-abelian action representable algebraically coherent category with normalizers if and only if $mathbb C$ is a semi-abelian action representable algebraically coherent category with normalizers. This result applies in particular to the categories of internal groupoids in the categories of groups, Lie algebras and cocommutative Hopf algebras, for instance.
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up
In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Serre, Hurewicz stack.
We prove general adjoint functor theorems for weakly (co)complete $n$-categories. This class of $n$-categories includes the homotopy $n$-categories of (co)complete $infty$-categories -- in particular, these $n$-categories do not admit all small (co)l
We show that the category of positive opetopes with contraction morphisms, i.e. all face maps and some degeneracies, forms a test category. The category of positive opetopic sets pOpeSet can be defined as a full subcategory of the category of polyg
We develop some basic concepts in the theory of higher categories internal to an arbitrary $infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yonedas lemma for internal categories.