ترغب بنشر مسار تعليمي؟ اضغط هنا

Yonedas lemma for internal higher categories

144   0   0.0 ( 0 )
 نشر من قبل Louis Martini
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Louis Martini




اسأل ChatGPT حول البحث

We develop some basic concepts in the theory of higher categories internal to an arbitrary $infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yonedas lemma for internal categories.



قيم البحث

اقرأ أيضاً

We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalizing the one introduced by Squier fo r word rewriting systems. We characterize this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.
169 - V. Hinich 2018
We continue the study of enriched infinity categories, using a definition equivalent to that of Gepner and Haugseng. In our approach enriched infinity categories are associative monoids in an especially designed monoidal category of enriched quivers. We prove that, in case the monoidal structure in the basic category M comes from direct product, our definition is essentially equivalent to the approach via Segal objects. Furthermore, we compare our notion with the notion of category left-tensored over M, and prove a version of Yoneda lemma in this context. Version 2: An error in 2.6.2 corrected. Version 3: a few minor corrections. Version 4: Section 8 added, describing correspondences of enriched categories. In case the basic monoidal category M is a prototopos with a cartesian structure, we prove that the category of correspondences is equivalent to the category of enriched categories over [1]. Version 5: terminology changed (former bicartesian fibrations became bifibrations), a few misprints corrected. Version 6: Section 2.11 added, dealing with operadic sieves. A number of corrections and clarifications made per referees request. Version 7: final version, accepted to Advances in Math. Version 8: a minor correction of 2.8.9-2.8.10.
The aim of this sequel to arXiv:1812.02935 is to set up the cornerstones of Koszul duality and Koszulity in the context of a large class of operadic categories. In particular, we will prove that operads, in the generalized sense of Batanin-Markl, gov erning important operad- and/or PROP-like structures such as the classical operads, their variants such as cyclic, modular or wheeled operads, and also diver
Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations. In this paper, we extend existing coherence theorems to the setting of indexed symmetric monoidal categories. The most central theorem states that a large family of operations on a bicategory defined from an indexed symmetric monoidal category are all canonically isomorphic. As a part of this theorem, we introduce a rigorous graphical calculus that specifies when two such operations admit a canonical isomorphism.
Adjoint functor theorems give necessary and sufficient conditions for a functor to admit an adjoint. In this paper we prove general adjoint functor theorems for functors between $infty$-categories. One of our main results is an $infty$-categorical ge neralization of Freyds classical General Adjoint Functor Theorem. As an application of this result, we recover Luries adjoint functor theorems for presentable $infty$-categories. We also discuss the comparison between adjunctions of $infty$-categories and homotopy adjunctions, and give a treatment of Brown representability for $infty$-categories based on Hellers purely categorical formulation of the classical Brown representability theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا