ترغب بنشر مسار تعليمي؟ اضغط هنا

Extension of topological groupoids and Serre, Hurewicz morphisms

79   0   0.0 ( 0 )
 نشر من قبل Praphulla Koushik
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Serre, Hurewicz stack.



قيم البحث

اقرأ أيضاً

When $mathbb C$ is a semi-abelian category, it is well known that the category $mathsf{Grpd}(mathbb C)$ of internal groupoids in $mathbb C$ is again semi-abelian. The problem of determining whether the same kind of phenomenon occurs when the property of being semi-abelian is replaced by the one of being action representable (in the sense of Borceux, Janelidze and Kelly) turns out to be rather subtle. In the present article we give a sufficient condition for this to be true: in fact we prove that the category $mathsf{Grpd}(mathbb C)$ is a semi-abelian action representable algebraically coherent category with normalizers if and only if $mathbb C$ is a semi-abelian action representable algebraically coherent category with normalizers. This result applies in particular to the categories of internal groupoids in the categories of groups, Lie algebras and cocommutative Hopf algebras, for instance.
Given a bundle gerbe on a compact smooth manifold or, more generally, on a compact etale Lie groupoid $M$, we show that the corresponding category of gerbe modules, if it is non-trivial, is equivalent to the category of finitely generated projective modules over an Azumaya algebra on $M$. This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles.
We give a definition of atlases for ineffective orbifolds, and prove that this definition leads to the same notion of orbifold as that defined via topological groupoids.
We study internal structures in regular categories using monoidal methods. Groupoids in a regular Goursat category can equivalently be described as special dagger Frobenius monoids in its monoidal category of relations. Similarly, connectors can equi valently be described as Frobenius structures with a ternary multiplication. We study such ternary Frobenius structures and the relationship to binary ones, generalising that between connectors and groupoids.
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is functorial, and defines a differential extension of odd K-theory, fitting into natural commutative diagrams and exact sequences involving K-theory and differential forms. To prove this we obtain along the way several results concerning even and odd Chern and Chern-Simons forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا