ترغب بنشر مسار تعليمي؟ اضغط هنا

Epidemic mitigation by statistical inference from contact tracing data

140   0   0.0 ( 0 )
 نشر من قبل Alfredo Braunstein
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Contact-tracing is an essential tool in order to mitigate the impact of pandemic such as the COVID-19. In order to achieve efficient and scalable contact-tracing in real time, digital devices can play an important role. While a lot of attention has been paid to analyzing the privacy and ethical risks of the associated mobile applications, so far much less research has been devoted to optimizing their performance and assessing their impact on the mitigation of the epidemic. We develop Bayesian inference methods to estimate the risk that an individual is infected. This inference is based on the list of his recent contacts and their own risk levels, as well as personal information such as results of tests or presence of syndromes. We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic. Our results show that in some range of epidemic spreading (typically when the manual tracing of all contacts of infected people becomes practically impossible, but before the fraction of infected people reaches the scale where a lock-down becomes unavoidable), this inference of individuals at risk could be an efficient way to mitigate the epidemic. Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact. Such communication may be encrypted and anonymized and thus compatible with privacy preserving standards. We conclude that probabilistic risk estimation is capable to enhance performance of digital contact tracing and should be considered in the currently developed mobile applications.



قيم البحث

اقرأ أيضاً

79 - Tao Feng , Sirui Song , Tong Xia 2021
The recent outbreak of COVID-19 poses a serious threat to peoples lives. Epidemic control strategies have also caused damage to the economy by cutting off humans daily commute. In this paper, we develop an Individual-based Reinforcement Learning Epid emic Control Agent (IDRLECA) to search for smart epidemic control strategies that can simultaneously minimize infections and the cost of mobility intervention. IDRLECA first hires an infection probability model to calculate the current infection probability of each individual. Then, the infection probabilities together with individuals health status and movement information are fed to a novel GNN to estimate the spread of the virus through human contacts. The estimated risks are used to further support an RL agent to select individual-level epidemic-control actions. The training of IDRLECA is guided by a specially designed reward function considering both the cost of mobility intervention and the effectiveness of epidemic control. Moreover, we design a constraint for control-action selection that eases its difficulty and further improve exploring efficiency. Extensive experimental results demonstrate that IDRLECA can suppress infections at a very low level and retain more than 95% of human mobility.
Discovering and isolating infected individuals is a cornerstone of epidemic control. Because many infectious diseases spread through close contacts, contact tracing is a key tool for case discovery and control. However, although contact tracing has b een performed widely, the mathematical understanding of contact tracing has not been fully established and it has not been clearly understood what determines the efficacy of contact tracing. Here, we reveal that, compared with forward tracing---tracing to whom disease spreads, backward tracing---tracing from whom disease spreads---is profoundly more effective. The effectiveness of backward tracing is due to simple but overlooked biases arising from the heterogeneity in contacts. Using simulations on both synthetic and high-resolution empirical contact datasets, we show that even at a small probability of detecting infected individuals, strategically executed contact tracing can prevent a significant fraction of further transmissions. We also show that---in terms of the number of prevented transmissions per isolation---case isolation combined with a small amount of contact tracing is more efficient than case isolation alone. By demonstrating that backward contact tracing is highly effective at discovering super-spreading events, we argue that the potential effectiveness of contact tracing has been underestimated. Therefore, there is a critical need for revisiting current contact tracing strategies so that they leverage all forms of biases. Our results also have important consequences for digital contact tracing because it will be crucial to incorporate the capability for backward and deep tracing while adhering to the privacy-preserving requirements of these new platforms.
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimat ion and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks within cells to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.
The Covid-19 epidemic of the novel coronavirus (severe acute respiratory syndrome SARS - CoV-2) has been spreading around the world. While different containment policies using non-pharmaceutical interventions have been applied, their efficiency are n ot known quantitatively. We show that the doubling time Td(t) with the success s factor, the characteristic time of the exponential growth of Td(t) in the arrested regime, is a reliable tool for early predictions of epidemic spread time evolution and it provides a quantitative measure of the success of different containment measures. The efficiency of the containment policy Lockdown case Finding mobile Tracing (LFT) using mandatory mobile contact tracing is much higher than the Lockdown Stop and Go (LSG) policy proposed by the Imperial College team in London. A very low s factor was reached by LFT policy giving the shortest time width of the dome of positive case curve and the lowest number of fatalities. The LFT policy has been able to reduce by a factor 100 the number of fatalities in the first 100 days of the Covid-19 epidemic, to reduce the time width of the Covid-19 pandemic dome by a factor 2.5 and to rapidly stop new outbreaks avoiding the second wave
76 - Luca DellAnna 2020
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solv ed exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, Covid-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا