ﻻ يوجد ملخص باللغة العربية
Contact-tracing is an essential tool in order to mitigate the impact of pandemic such as the COVID-19. In order to achieve efficient and scalable contact-tracing in real time, digital devices can play an important role. While a lot of attention has been paid to analyzing the privacy and ethical risks of the associated mobile applications, so far much less research has been devoted to optimizing their performance and assessing their impact on the mitigation of the epidemic. We develop Bayesian inference methods to estimate the risk that an individual is infected. This inference is based on the list of his recent contacts and their own risk levels, as well as personal information such as results of tests or presence of syndromes. We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic. Our results show that in some range of epidemic spreading (typically when the manual tracing of all contacts of infected people becomes practically impossible, but before the fraction of infected people reaches the scale where a lock-down becomes unavoidable), this inference of individuals at risk could be an efficient way to mitigate the epidemic. Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact. Such communication may be encrypted and anonymized and thus compatible with privacy preserving standards. We conclude that probabilistic risk estimation is capable to enhance performance of digital contact tracing and should be considered in the currently developed mobile applications.
The recent outbreak of COVID-19 poses a serious threat to peoples lives. Epidemic control strategies have also caused damage to the economy by cutting off humans daily commute. In this paper, we develop an Individual-based Reinforcement Learning Epid
Discovering and isolating infected individuals is a cornerstone of epidemic control. Because many infectious diseases spread through close contacts, contact tracing is a key tool for case discovery and control. However, although contact tracing has b
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimat
The Covid-19 epidemic of the novel coronavirus (severe acute respiratory syndrome SARS - CoV-2) has been spreading around the world. While different containment policies using non-pharmaceutical interventions have been applied, their efficiency are n
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solv