ﻻ يوجد ملخص باللغة العربية
Recommender systems are being employed across an increasingly diverse set of domains that can potentially make a significant social and individual impact. For this reason, considering fairness is a critical step in the design and evaluation of such systems. In this paper, we introduce HyperFair, a general framework for enforcing soft fairness constraints in a hybrid recommender system. HyperFair models integrate variations of fairness metrics as a regularization of a joint inference objective function. We implement our approach using probabilistic soft logic and show that it is particularly well-suited for this task as it is expressive and structural constraints can be added to the system in a concise and interpretable manner. We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template; second as a fair retrofitting technique that can be used to improve the fairness of predictions from a black-box model. We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender. We also run experiments showing the effectiveness of our methods for the task of retrofitting a black-box model and the trade-off between the amount of fairness enforced and the prediction performance.
Fairness in algorithmic decision-making processes is attracting increasing concern. When an algorithm is applied to human-related decision-making an estimator solely optimizing its predictive power can learn biases on the existing data, which motivat
This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first
The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the to
Email has remained a principal form of communication among people, both in enterprise and social settings. With a deluge of emails crowding our mailboxes daily, there is a dire need of smart email systems that can recover important emails and make pe
This paper describes a prototype system that integrates social media analysis into the European Flood Awareness System (EFAS). This integration allows the collection of social media data to be automatically triggered by flood risk warnings determined