ﻻ يوجد ملخص باللغة العربية
We describe the point and contact equivalence groupoids of an important class of two-dimensional quasilinear hyperbolic equations. In particular, we prove that this class is normalized in the usual sense with respect to point transformations, and its contact equivalence groupoid is generated by the first-order prolongation of its point equivalence groupoid, the contact vertex group of the wave equation and a family of contact admissible transformations between trivially Darboux-integrable equations.
We study admissible and equivalence point transformations between generalized multidimensional nonlinear Schrodinger equations and classify Lie symmetries of such equations. We begin with a wide superclass of Schrodinger-type equations, which include
We show that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the scattering matrix is in the unital Wiener algebra of functions with integrable Fourier transforms. Then we use this to derive dispersion est
We show that non-uniqueness of the Leray-Hopf solutions of the Navier--Stokes equation on the hyperbolic plane observed in arXiv:1006.2819 is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on the hyperbolic spac
The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting
A geometric study of two 4-dimensional mappings is given. By the resolution of indeterminacy they are lifted to pseudo-automorphisms of rational varieties obtained from $({mathbb P}^1)^4$ by blowing-up along sixteen 2-dimensional subvarieties. The sy