ﻻ يوجد ملخص باللغة العربية
A geometric study of two 4-dimensional mappings is given. By the resolution of indeterminacy they are lifted to pseudo-automorphisms of rational varieties obtained from $({mathbb P}^1)^4$ by blowing-up along sixteen 2-dimensional subvarieties. The symmetry groups, the invariants and the degree growth rates are computed from the linearisation on the corresponding Neron-Severi bilattices. It turns out that the deautonomised version of one of the mappings is a Backlund transformation of a direct product of the fourth Painleve equation which has $A_2^{(1)}+A_2^{(1)}$ type affine Weyl group symmetry, while that of the other mapping is of Noumi-Yamadas $A_5^{(1)}$ Painleve equation.
It is well known that two-dimensional mappings preserving a rational elliptic fibration, like the Quispel-Roberts-Thompson mappings, can be deautonomized to discrete Painleve equations. However, the dependence of this procedure on the choice of a par
We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve e
In this paper we study a certain recurrence relation, that can be used to generate ladder operators for the Laguerre Unitary ensemble, from the point of view of Sakais geometric theory of Painleve equations. On one hand, this gives us one more detail
The classical Painleve equations are so well known that it may come as a surprise to learn that the asymptotic description of its solutions remains incomplete. The problem lies mainly with the description of families of solutions in the complex domai
Four 4-dimensional Painleve-type equations are obtained by isomonodromic deformation of Fuchsian equations: they are the Garnier system in two variables, the Fuji-Suzuki system, the Sasano system, and the sixth matrix Painleve system. Degenerating th