ﻻ يوجد ملخص باللغة العربية
We show that non-uniqueness of the Leray-Hopf solutions of the Navier--Stokes equation on the hyperbolic plane observed in arXiv:1006.2819 is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on the hyperbolic spaces of higher dimension. We also describe the corresponding general Hamiltonian setting of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
In this paper, we provide rigorous justification of the hydrostatic approximation and the derivation of primitive equations as the small aspect ratio limit of the incompressible three-dimensional Navier-Stokes equations in the anisotropic horizontal
We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
In this paper we give optimal lower bounds for the blow-up rate of the $dot{H}^{s}left(mathbb{T}^3right)$-norm, $frac{1}{2}<s<frac{5}{2}$, of a putative singular solution of the Navier-Stokes equations, and we also present an elementary proof for a l
A hyperbolic relaxation of the classical Navier-Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and t
The main result of [C. Morosi and L. Pizzocchero, Nonlinear Analysis, 2012] is presented in a variant, based on a C^infinity formulation of the Cauchy problem; in this approach, the a posteriori analysis of an approximate solution gives a bound on th