ﻻ يوجد ملخص باللغة العربية
The algebraic expression $3 + 2 + 6$ can be evaluated to $11$, but it can also be partially evaluated to $5 + 6$. In categorical algebra, such partial evaluations can be defined in terms of the $1$-skeleton of the bar construction for algebras of a monad. We show that this partial evaluation relation can be seen as the relation internal to the category of algebras generated by relating a formal expression to its total evaluation. The relation is transitive for many monads which describe commonly encountered algebraic structures, and more generally for BC monads on $mathsf{Set}$ (which are those monads for which the underlying functor and the multiplication are weakly cartesian). We find that this is not true for all monads: we describe a finitary monad on $mathsf{Set}$ for which the partial evaluation relation on the terminal algebra is not transitive. With the perspective of higher algebraic rewriting in mind, we then investigate the compositional structure of the bar construction in all dimensions. We show that for algebras of BC monads, the bar construction has fillers for all directed acyclic configurations in $Delta^n$, but generally not all inner horns.
Monads can be interpreted as encoding formal expressions, or formal operations in the sense of universal algebra. We give a construction which formalizes the idea of evaluating an expression partially: for example, 2+3 can be obtained as a partial ev
In homotopy type theory we can define the join of maps as a binary operation on maps with a common co-domain. This operation is commutative, associative, and the unique map from the empty type into the common codomain is a neutral element. Moreover,
Suppose k is a field of characteristic 2, and $n,mgeq 4$ powers of 2. Then the $A_infty$-structure of the group cohomology algebras $H^*(C_n,k)$ and $(H^*(C_m,k)$ are well known. We give results characterizing an $A_infty$-structure on $H^*(C_ntimes
We describe a category of undirected graphs which comes equipped with a faithful functor into the category of (colored) modular operads. The associated singular functor from modular operads to presheaves is fully faithful, and its essential image can
Cheng, Gurski, and Riehl constructed a cyclic double multicategory of multivariable adjunctions. We show that the same information is carried by a double polycategory, in which opposite categories are polycategorical duals. Moreover, this double poly