ﻻ يوجد ملخص باللغة العربية
Cheng, Gurski, and Riehl constructed a cyclic double multicategory of multivariable adjunctions. We show that the same information is carried by a double polycategory, in which opposite categories are polycategorical duals. Moreover, this double polycategory is a full substructure of a double Chu construction, whose objects are a sort of polarized category, and which is a natural home for 2-categorical dualities. We obtain the double Chu construction using a general Chu-Dialectica construction on polycategories, which includes both the Chu construction and the categorical Dialectica construction of de Paiva. The Chu and Dialectica constructions each impose additional hypotheses making the resulting polycategory representable (hence *-autonomous), but for different reasons; this leads to their apparent differences.
We use the basic expected properties of the Gray tensor product of $(infty,2)$-categories to study (co)lax natural transformations. Using results of Riehl-Verity and Zaganidis we identify lax transformations between adjunctions and monads with commut
The categorical modeling of Petri nets has received much attention recently. The Dialectica construction has also had its fair share of attention. We revisit the use of the Dialectica construction as a categorical model for Petri nets generalizing th
Godels Dialectica interpretation was designed to obtain a relative consistency proof for Heyting arithmetic, to be used in conjunction with the double negation interpretation to obtain the consistency of Peano arithmetic. In recent years, proof theor
Let $U$ be a strong monoidal functor between monoidal categories. If it has both a left adjoint $L$ and a right adjoint $R$, we show that the pair $(R,L)$ is a linearly distributive functor and $(U,U)dashv (R,L)$ is a linearly distributive adjunction
Chu connections and back diagonals are introduced as morphisms for distributors between categories enriched in a small quantaloid $mathcal{Q}$. These notions, meaningful for closed bicategories, dualize the constructions of arrow categories and the F