ﻻ يوجد ملخص باللغة العربية
Topological superconductors have long been predicted to host Majorana zero modes which obey non-Abelian statistics and have potential for realizing non-decoherence topological quantum computation. However, material realization of topological superconductors is still a challenge in condensed matter physics. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we predict and then unveil the coexistence of topological Dirac semimetal and topological insulator states in the vicinity of Fermi energy ($E_F$) in the titanium-based oxypnictide superconductor BaTi$_2$Sb$_2$O. Further spin-resolved measurements confirm its spin-helical surface states around $E_F$, which are topologically protected and give an opportunity for realization of Majorana zero modes and Majorana flat bands in one material. Hosting dual topological superconducting states, the intrinsic superconductor BaTi$_2$Sb$_2$O is expected to be a promising platform for further investigation of topological superconductivity.
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the
We report an optical spectroscopy study on the single crystal of Na$_2$Ti$_2$As$_2$O, a sister compound of superconductor BaTi$_2$Sb$_2$O. The study reveals unexpectedly two density wave phase transitions. The first transition at 320 K results in the
We report the synthesis and physical properties of a full Heusler compound, MgPd$_2$Sb, which we found to show superconductivity below $T_c$ = 2.2 K. MgPd$_2$Sb was obtained by a two-step solid-state reaction method and its purity and cubic crystal s
Here we present a systematic study of the effects of pressure on the superconducting and spin/charge density wave (SDW/CDW) transitions of Ba$_{1-x}$Na$_x$Ti$_2$Sb$_2$O (x = 0, 0.10, and 0.15) by means of resistivity measurements. For x = 0 and 0.10,
The first-order transition at $T_{rm 0} = 270$ K for the platinum-based SrPt$_2$Sb$_2$ superconductor was investigated using X-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt$_2$Sb$_2$ was cooled down through $T_{r