ﻻ يوجد ملخص باللغة العربية
In all Fe superconductors the maximal $T_c$ correlates with the average anion height above the Fe plane, i.e. with the geometry of the FeAs$_4$ or FeCh$_4$ (Ch = Te, Se, S) tetrahedron. By synthesizing FeSe$_{1-x}$S$_x$ (0 $leq$ x $leq$ 1) single crystal alloys and by performing a series of experiments we find that $T_c$ does scale with the average anion height for $x$ in the presence of nematic order and near FeS, whereas superconductivity changes for all other $x$ track local crystallographic disorder and disorder-related scattering. Our findings demonstrate the strong coupling between disorder and $T_c$ as $x$ is tuned beyond the nematic critical point (NCP) and provide evidence of a $T_c$ tuning mechanism related to local bond disorder.
Impurity bound states and quasi-particle scattering from these can serve as sensitive probes for identifying the pairing state of a superconducting condensate. We introduce and discuss defect bound state quasi-particle interference (DBS-QPI) imaging
The superconducting order parameter is directly related to the pairing interaction, with the amplitude determined by the interaction strength, while the phase reflects the spatial structure of the interaction. However, given the large variety of mate
By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr2RuO4, a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this ox
The interplay of nematicity and superconductivity has been observed in a wide variety of quantum materials. To explore this interplay, we consider a two-dimensional (2D) array of nematogens, local droplets with $Z_3$ nematicity, coupled to a network
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) sta