ترغب بنشر مسار تعليمي؟ اضغط هنا

QED: A Framework and Dataset for Explanations in Question Answering

79   0   0.0 ( 0 )
 نشر من قبل Michael Collins
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks -- post-hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline.

قيم البحث

اقرأ أيضاً

Relation extraction is an important task in knowledge acquisition and text understanding. Existing works mainly focus on improving relation extraction by extracting effective features or designing reasonable model structures. However, few works have focused on how to validate and correct the results generated by the existing relation extraction models. We argue that validation is an important and promising direction to further improve the performance of relation extraction. In this paper, we explore the possibility of using question answering as validation. Specifically, we propose a novel question-answering based framework to validate the results from relation extraction models. Our proposed framework can be easily applied to existing relation classifiers without any additional information. We conduct extensive experiments on the popular NYT dataset to evaluate the proposed framework, and observe consistent improvements over five strong baselines.
157 - Jie Ma , Jun Liu , Junjun Li 2020
Textbook Question Answering (TQA) is a task that one should answer a diagram/non-diagram question given a large multi-modal context consisting of abundant essays and diagrams. We argue that the explainability of this task should place students as a k ey aspect to be considered. To address this issue, we devise a novel architecture towards span-level eXplanations of the TQA (XTQA) based on our proposed coarse-to-fine grained algorithm, which can provide not only the answers but also the span-level evidences to choose them for students. This algorithm first coarsely chooses top $M$ paragraphs relevant to questions using the TF-IDF method, and then chooses top $K$ evidence spans finely from all candidate spans within these paragraphs by computing the information gain of each span to questions. Experimental results shows that XTQA significantly improves the state-of-the-art performance compared with baselines. The source code is available at https://github.com/keep-smile-001/opentqa
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph struc tures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
Despite the number of currently available datasets on video question answering, there still remains a need for a dataset involving multi-step and non-factoid answers. Moreover, relying on video transcripts remains an under-explored topic. To adequate ly address this, We propose a new question answering task on instructional videos, because of their verbose and narrative nature. While previous studies on video question answering have focused on generating a short text as an answer, given a question and video clip, our task aims to identify a span of a video segment as an answer which contains instructional details with various granularities. This work focuses on screencast tutorial videos pertaining to an image editing program. We introduce a dataset, TutorialVQA, consisting of about 6,000manually collected triples of (video, question, answer span). We also provide experimental results with several baselines algorithms using the video transcripts. The results indicate that the task is challenging and call for the investigation of new algorithms.
Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone migh t lead to severe coverage problems. To fill in the gap, we present HybridQA https://github.com/wenhuchen/HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid models score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا