ترغب بنشر مسار تعليمي؟ اضغط هنا

HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data

166   0   0.0 ( 0 )
 نشر من قبل Wenhu Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA https://github.com/wenhuchen/HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid models score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.



قيم البحث

اقرأ أيضاً

Hybrid data combining both tabular and textual content (e.g., financial reports) are quite pervasive in the real world. However, Question Answering (QA) over such hybrid data is largely neglected in existing research. In this work, we extract samples from real financial reports to build a new large-scale QA dataset containing both Tabular And Textual data, named TAT-QA, where numerical reasoning is usually required to infer the answer, such as addition, subtraction, multiplication, division, counting, comparison/sorting, and the compositions. We further propose a novel QA model termed TAGOP, which is capable of reasoning over both tables and text. It adopts sequence tagging to extract relevant cells from the table along with relevant spans from the text to infer their semantics, and then applies symbolic reasoning over them with a set of aggregation operators to arrive at the final answer. TAGOPachieves 58.0% inF1, which is an 11.1% absolute increase over the previous best baseline model, according to our experiments on TAT-QA. But this result still lags far behind performance of expert human, i.e.90.8% in F1. It is demonstrated that our TAT-QA is very challenging and can serve as a benchmark for training and testing powerful QA models that address hybrid form data.
This paper proposes a question-answering (QA) benchmark for spatial reasoning on natural language text which contains more realistic spatial phenomena not covered by prior work and is challenging for state-of-the-art language models (LM). We propose a distant supervision method to improve on this task. Specifically, we design grammar and reasoning rules to automatically generate a spatial description of visual scenes and corresponding QA pairs. Experiments show that further pretraining LMs on these automatically generated data significantly improves LMs capability on spatial understanding, which in turn helps to better solve two external datasets, bAbI, and boolQ. We hope that this work can foster investigations into more sophisticated models for spatial reasoning over text.
The current state-of-the-art generative models for open-domain question answering (ODQA) have focused on generating direct answers from unstructured textual information. However, a large amount of worlds knowledge is stored in structured databases, a nd need to be accessed using query languages such as SQL. Furthermore, query languages can answer questions that require complex reasoning, as well as offering full explainability. In this paper, we propose a hybrid framework that takes both textual and tabular evidence as input and generates either direct answers or SQL queries depending on which form could better answer the question. The generated SQL queries can then be executed on the associated databases to obtain the final answers. To the best of our knowledge, this is the first paper that applies Text2SQL to ODQA tasks. Empirically, we demonstrate that on several ODQA datasets, the hybrid methods consistently outperforms the baseline models that only take homogeneous input by a large margin. Specifically we achieve state-of-the-art performance on OpenSQuAD dataset using a T5-base model. In a detailed analysis, we demonstrate that the being able to generate structural SQL queries can always bring gains, especially for those questions that requires complex reasoning.
84 - Jiaxin Shi , Shulin Cao , Lei Hou 2021
Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., textit{spouse}) or tex t in text corpus (e.g., textit{they have been married for 26 years}). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.
105 - Yuwei Fang , Siqi Sun , Zhe Gan 2019
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا