ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of VHE gamma-ray emission and multi-wavelength observations of the BL Lac object 1RXS J101015.9-311909

149   0   0.0 ( 0 )
 نشر من قبل Yvonne Becherini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

1RXS J101015.9-311909 is a galaxy located at a redshift of z=0.14 hosting an active nucleus belonging to the class of bright BL Lac objects. Observations at high (HE, E > 100 MeV) and very high (VHE, E > 100 GeV) energies provide insights into the origin of very energetic particles present in such sources and the radiation processes at work. We report on results from VHE observations performed between 2006-10 with H.E.S.S. H.E.S.S. data have been analysed with enhanced analysis methods, making the detection of faint sources more significant. VHE emission at a position coincident with 1RXS J101015.9-311909 is detected with H.E.S.S. for the first time. In a total good-quality livetime of about 49 h, we measure 263 excess counts, corresponding to a significance of 7.1sigma. The photon spectrum above 0.2 TeV can be described by a power-law with a photon index of Gamma = 3.08pm0.42_{stat}pm0.20_{sys}. The integral flux above 0.2 TeV is about 0.8% of the flux of the Crab nebula and shows no significant variability over the time reported. In addition, public Fermi/LAT data are analysed to search for high energy emission from the source. The Fermi/LAT HE emission is significant at 8.3sigma in the chosen 25-month dataset. UV and X-ray contemporaneous observations with the Swift satellite in May 2007 are also reported, together with optical observations performed with the ATOM telescope located at the H.E.S.S. site. Swift observations reveal an absorbed X-ray flux of F_{0.3-7 keV} = 1.04^{+0.04}_{-0.05} times 10^{-11} erg.cm^{-2}.s^{-1} in the 0.3-7 keV range. Finally, all the available data are used to study the sources multi-wavelength properties. The SED can be reproduced using a simple one-zone SSC model with emission from a region with a Doppler factor of 30 and a magnetic field between 0.025 and 0.16 G. These parameters are similar to those obtained for other sources of this type.



قيم البحث

اقرأ أيضاً

We study the non-thermal jet emission of the BL Lac object B3 2247+381 during a high optical state. The MAGIC telescopes observed the source during 13 nights between September 30th and October 30th 2010, collecting a total of 14.2 hours of good quali ty very high energy (VHE) $gamma$-ray data. Simultaneous multiwavelength data was obtained with X-ray observations by the Swift satellite and optical R-band observations at the KVA-telescope. We also use high energy $gamma$-ray (HE, 0.1 GeV-100 GeV) data from the Fermi satellite. The BL Lac object B3 2247+381 (z=0.119) was detected, for the first time, at VHE $gamma$-rays at a statistical significance of 5.6 $sigma$. A soft VHE spectrum with a photon index of -3.2 $pm$ 0.6 was determined. No significant short term flux variations were found. We model the spectral energy distribution using a one-zone SSC-model, which can successfully describe our data.
PKS 0548-322 (z=0.069) is a ``high-frequency-peaked BL Lac object and a candidate very high energy (VHE, E>100 GeV) gamma-ray emitter, due to its high X-ray and radio flux. Observations at the VHE band provide insights into the origin of very energet ic particles present in this source and the radiation processes at work. We report observations made between October 2004 and January 2008 with the H.E.S.S. array, a four imaging atmospheric-Cherenkov telescopes. Contemporaneous UV and X-ray observations with the Swift satellite in November 2006 are also reported. PKS 0548-322 is detected for the first time in the VHE band with H.E.S.S. We measure an excess of 216 gamma-rays corresponding to a significance of 5.6 standard deviations. The photon spectrum of the source is described by a power-law, with a photon index of Gamma=2.86 +/- 0.34 (stat) +/- 0.10 (sys). The integral flux above 200 GeV is 1.3 % of the flux of the Crab Nebula, and is consistent with being constant in time. Contemporaneous Swift/XRT observations reveal an X-ray flux between 2 and 10 keV of F_{2-10 keV}=2.3 +/- 0.2 x 10^{-11} erg.cm^{-2}. s^{-1}, an intermediate intensity state with respect to previous observations. The spectral energy distribution can be reproduced using a simple one-zone synchrotron self Compton model, with parameters similar those observed for other sources of this type.
1ES 0414+009 (z = 0.287) is a distant high-frequency-peaked BL Lac object, and has long been considered a likely emitter of very-high energy (VHE, E>100 GeV) gamma-rays due to its high X-ray and radio flux. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the Extragalactic Background Light (EBL). We report observations made between October 2005 and December 2009 with H.E.S.S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV - 100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of 3.45 pm 0.25stat pm 0.20syst. The integral flux above 200 GeV is (1.88 pm 0.20stat pm 0.38syst) times10-12 cm-2 s-1. Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 pm 0.2stat) times 10-9 erg cm-2 s-1, and a spectrum well described by a power-law function with a photon index 1.85 pm 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8 - 1) times 10-11 erg cm-2 s-1, and a steep spectrum (2.2 - 2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. ...
The active galactic nucleus PKS 0301-243 (z=0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV < E < 100 GeV) by Fermi/LAT. This paper reports on the discovery of PKS 0301-243 at very high energies (E>100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 hours. Gamma rays above 200 GeV are detected at a significance of 9.4{sigma}. A hint of variability at the 2.5{sigma} level is found. An integral flux I(E > 200 GeV) = (3.3 +/- 1.1_stat +/- 0.7_syst)e-12 ph cm^-2s^-1 and a photon index {Gamma} = 4.6 +/- 0.7_stat +/- 0.2_syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301-243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.
A hotspot at a position compatible with the BL Lac object 1ES 2322-409 was serendipitously detected with H.E.S.S. during observations performed in 2004 and 2006 on the blazar PKS 2316-423. Additional data on 1ES 2322-409 were taken in 2011 and 2012, leading to a total live-time of 22.3h. Point-like very-high-energy (VHE; E>100GeV) $gamma$-ray emission is detected from a source centred on the 1ES 2322-409 position, with an excess of 116.7 events at a significance of 6.0$sigma$. The average VHE $gamma$-ray spectrum is well described with a power law with a photon index $Gamma=3.40pm0.66_{text{stat}}pm0.20_{text{sys}}$ and an integral flux $Phi(E>200GeV) = (3.11pm0.71_{rm stat}pm0.62_{rm sys})times10^{-12} cm^{-2} s^{-1}$, which corresponds to 1.1$%$ of the Crab nebula flux above 200 GeV. Multi-wavelength data obtained with Fermi LAT, Swift XRT and UVOT, RXTE PCA, ATOM, and additional data from WISE, GROND and Catalina, are also used to characterise the broad-band non-thermal emission of 1ES 2322-409. The multi-wavelength behaviour indicates day-scale variability. Swift UVOT and XRT data show strong variability at longer scales. A spectral energy distribution (SED) is built from contemporaneous observations obtained around a high state identified in Swift data. A modelling of the SED is performed with a stationary homogeneous one-zone synchrotron-self-Compton (SSC) leptonic model. The redshift of the source being unknown, two plausible values were tested for the modelling. A systematic scan of the model parameters space is performed, resulting in a well-constrained combination of values providing a good description of the broad-band behaviour of 1ES 2322-409.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا