ترغب بنشر مسار تعليمي؟ اضغط هنا

Visual-speech Synthesis of Exaggerated Corrective Feedback

153   0   0.0 ( 0 )
 نشر من قبل Tianyi Ma
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

To provide more discriminative feedback for the second language (L2) learners to better identify their mispronunciation, we propose a method for exaggerated visual-speech feedback in computer-assisted pronunciation training (CAPT). The speech exaggeration is realized by an emphatic speech generation neural network based on Tacotron, while the visual exaggeration is accomplished by ADC Viseme Blending, namely increasing Amplitude of movement, extending the phones Duration and enhancing the color Contrast. User studies show that exaggerated feedback outperforms non-exaggerated version on helping learners with pronunciation identification and pronunciation improvement.



قيم البحث

اقرأ أيضاً

372 - Yaohua Bu , Tianyi Ma , Weijun Li 2021
Second language (L2) English learners often find it difficult to improve their pronunciations due to the lack of expressive and personalized corrective feedback. In this paper, we present Pronunciation Teacher (PTeacher), a Computer-Aided Pronunciati on Training (CAPT) system that provides personalized exaggerated audio-visual corrective feedback for mispronunciations. Though the effectiveness of exaggerated feedback has been demonstrated, it is still unclear how to define the appropriate degrees of exaggeration when interacting with individual learners. To fill in this gap, we interview 100 L2 English learners and 22 professional native teachers to understand their needs and experiences. Three critical metrics are proposed for both learners and teachers to identify the best exaggeration levels in both audio and visual modalities. Additionally, we incorporate the personalized dynamic feedback mechanism given the English proficiency of learners. Based on the obtained insights, a comprehensive interactive pronunciation training course is designed to help L2 learners rectify mispronunciations in a more perceptible, understandable, and discriminative manner. Extensive user studies demonstrate that our system significantly promotes the learners learning efficiency.
105 - Xu Tan , Tao Qin , Frank Soong 2021
Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural speech given text, is a hot research topic in speech, language, and machine learning communities and has broad applications in the industry. As the developme nt of deep learning and artificial intelligence, neural network-based TTS has significantly improved the quality of synthesized speech in recent years. In this paper, we conduct a comprehensive survey on neural TTS, aiming to provide a good understanding of current research and future trends. We focus on the key components in neural TTS, including text analysis, acoustic models and vocoders, and several advanced topics, including fast TTS, low-resource TTS, robust TTS, expressive TTS, and adaptive TTS, etc. We further summarize resources related to TTS (e.g., datasets, opensource implementations) and discuss future research directions. This survey can serve both academic researchers and industry practitioners working on TTS.
118 - Jianwei Yu , Bo Wu , Rongzhi Gu 2020
Automatic speech recognition (ASR) of overlapped speech remains a highly challenging task to date. To this end, multi-channel microphone array data are widely used in state-of-the-art ASR systems. Motivated by the invariance of visual modality to aco ustic signal corruption, this paper presents an audio-visual multi-channel overlapped speech recognition system featuring tightly integrated separation front-end and recognition back-end. A series of audio-visual multi-channel speech separation front-end components based on textit{TF masking}, textit{filter&sum} and textit{mask-based MVDR} beamforming approaches were developed. To reduce the error cost mismatch between the separation and recognition components, they were jointly fine-tuned using the connectionist temporal classification (CTC) loss function, or a multi-task criterion interpolation with scale-invariant signal to noise ratio (Si-SNR) error cost. Experiments suggest that the proposed multi-channel AVSR system outperforms the baseline audio-only ASR system by up to 6.81% (26.83% relative) and 22.22% (56.87% relative) absolute word error rate (WER) reduction on overlapped speech constructed using either simulation or replaying of the lipreading sentence 2 (LRS2) dataset respectively.
We have been investigating rakugo speech synthesis as a challenging example of speech synthesis that entertains audiences. Rakugo is a traditional Japanese form of verbal entertainment similar to a combination of one-person stand-up comedy and comic storytelling and is popular even today. In rakugo, a performer plays multiple characters, and conversations or dialogues between the characters make the story progress. To investigate how close the quality of synthesized rakugo speech can approach that of professionals speech, we modeled rakugo speech using Tacotron 2, a state-of-the-art speech synthesis system that can produce speech that sounds as natural as human speech albeit under limited conditions, and an enhanced version of it with self-attention to better consider long-term dependencies. We also used global style tokens and manually labeled context features to enrich speaking styles. Through a listening test, we measured not only naturalness but also distinguishability of characters, understandability of the content, and the degree of entertainment. Although we found that the speech synthesis models could not yet reach the professional level, the results of the listening test provided interesting insights: 1) we should not focus only on the naturalness of synthesized speech but also the distinguishability of characters and the understandability of the content to further entertain audiences; 2) the fundamental frequency (fo) expressions of synthesized speech are poorer than those of human speech, and more entertaining speech should have richer fo expression. Although there is room for improvement, we believe this is an important stepping stone toward achieving entertaining speech synthesis at the professional level.
We propose a linear prediction (LP)-based waveform generation method via WaveNet vocoding framework. A WaveNet-based neural vocoder has significantly improved the quality of parametric text-to-speech (TTS) systems. However, it is challenging to effec tively train the neural vocoder when the target database contains massive amount of acoustical information such as prosody, style or expressiveness. As a solution, the approaches that only generate the vocal source component by a neural vocoder have been proposed. However, they tend to generate synthetic noise because the vocal source component is independently handled without considering the entire speech production process; where it is inevitable to come up with a mismatch between vocal source and vocal tract filter. To address this problem, we propose an LP-WaveNet vocoder, where the complicated interactions between vocal source and vocal tract components are jointly trained within a mixture density network-based WaveNet model. The experimental results verify that the proposed system outperforms the conventional WaveNet vocoders both objectively and subjectively. In particular, the proposed method achieves 4.47 MOS within the TTS framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا