ﻻ يوجد ملخص باللغة العربية
Second language (L2) English learners often find it difficult to improve their pronunciations due to the lack of expressive and personalized corrective feedback. In this paper, we present Pronunciation Teacher (PTeacher), a Computer-Aided Pronunciation Training (CAPT) system that provides personalized exaggerated audio-visual corrective feedback for mispronunciations. Though the effectiveness of exaggerated feedback has been demonstrated, it is still unclear how to define the appropriate degrees of exaggeration when interacting with individual learners. To fill in this gap, we interview 100 L2 English learners and 22 professional native teachers to understand their needs and experiences. Three critical metrics are proposed for both learners and teachers to identify the best exaggeration levels in both audio and visual modalities. Additionally, we incorporate the personalized dynamic feedback mechanism given the English proficiency of learners. Based on the obtained insights, a comprehensive interactive pronunciation training course is designed to help L2 learners rectify mispronunciations in a more perceptible, understandable, and discriminative manner. Extensive user studies demonstrate that our system significantly promotes the learners learning efficiency.
To provide more discriminative feedback for the second language (L2) learners to better identify their mispronunciation, we propose a method for exaggerated visual-speech feedback in computer-assisted pronunciation training (CAPT). The speech exagger
This paper proposes a novel and statistical method of ability estimation based on acquisition distribution for a personalized computer aided question generation. This method captures the learning outcomes over time and provides a flexible measurement
Computer-assisted multimodal training is an effective way of learning complex motor skills in various applications. In particular disciplines (eg. healthcare) incompetency in performing dexterous hands-on examinations (clinical palpation) may result
Learning to play an instrument is intrinsically multimodal, and we have seen a trend of applying visual and haptic feedback in music games and computer-aided music tutoring systems. However, most current systems are still designed to master individua
A key challenge in Imitation Learning (IL) is that optimal state actions demonstrations are difficult for the teacher to provide. For example in robotics, providing kinesthetic demonstrations on a robotic manipulator requires the teacher to control m