ﻻ يوجد ملخص باللغة العربية
With the ever-increasing use of complex machine learning models in critical applications within the finance domain, explaining the decisions of the model has become a necessity. With applications spanning from credit scoring to credit marketing, the impact of these models is undeniable. Among the multiple ways in which one can explain the decisions of these complicated models, local post hoc model agnostic explanations have gained massive adoption. These methods allow one to explain each prediction independent of the modelling technique that was used while training. As explanations, they either give individual feature attributions or provide sufficient rules that represent conditions for a prediction to be made. The current state of the art methods use rudimentary methods to generate synthetic data around the point to be explained. This is followed by fitting simple linear models as surrogates to obtain a local interpretation of the prediction. In this paper, we seek to significantly improve on both, the method used to generate the explanations and the nature of explanations produced. We use a Generative Adversarial Network for synthetic data generation and train a piecewise linear model in the form of Linear Model Trees to be used as the surrogate model.In addition to individual feature attributions, we also provide an accompanying context to our explanations by leveraging the structure and property of our surrogate model.
In recent years, post-hoc local instance-level and global dataset-level explainability of black-box models has received a lot of attention. Much less attention has been given to obtaining insights at intermediate or group levels, which is a need outl
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many appl
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes
Recurrent Neural Networks (RNNs) have achieved remarkable performance on a range of tasks. A key step to further empowering RNN-based approaches is improving their explainability and interpretability. In this work we present MEME: a model extraction
Bandit learning algorithms typically involve the balance of exploration and exploitation. However, in many practical applications, worst-case scenarios needing systematic exploration are seldom encountered. In this work, we consider a smoothed settin