ﻻ يوجد ملخص باللغة العربية
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an information processing task whose optimal performance is achieved only by theories realising the same correlations as quantum theory in any causal structure. In [Phys. Rev. Lett. 125 060406 (2020)] we introduced a candidate task for this, the adaptive CHSH game. Here, we analyse the maximum probability of winning this game in different generalised probabilistic theories. We show that theories with a joint state space given by the minimal or the maximal tensor product are inferior to quantum theory, before considering other tensor products in theories whose elementary systems have various two-dimensional state spaces. For these, we find no theories that outperform quantum theory in the adaptive CHSH game and prove that it is impossible to recover the quantum performance in various cases. This is the first step towards a general solution that, if successful, will have wide-ranging consequences, in particular, enabling an experiment that could rule out all theories in which the set of realisable correlations does not coincide with the quantum set.
We study the relation between the maximal violation of Svetlichnys inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horn
We investigate quantum nonlocality of a single-photon entangled state under feasible measurement techniques consisting of on-off and homodyne detections along with unitary operations of displacement and squeezing. We test for a potential violation of
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequali
We propose a geometric multiparty extension of Clauser-Horne (CH) inequality. The standard CH inequality can be shown to be an implication of the fact that statistical separation between two events, $A$ and $B$, defined as $P(Aoplus B)$, where $Aoplu