ﻻ يوجد ملخص باللغة العربية
We study the relation between the maximal violation of Svetlichnys inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horne-Shimony-Holt and the Svetlichny games. For the two-qubit and three-qubit MNMS, we showed that these states are also the most tolerant state against white noise, and thus serve as valuable quantum resources for such games. In particular, the quantum prediction of the MNMS decreases as the linear entropy increases, and then ceases to be nonlocal when the linear entropy reaches the critical points ${2}/{3}$ and ${9}/{14}$ for the two- and three-qubit cases, respectively. The MNMS are related to classical errors in experimental preparation of maximally entangled states.
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an i
We investigate quantum nonlocality of a single-photon entangled state under feasible measurement techniques consisting of on-off and homodyne detections along with unitary operations of displacement and squeezing. We test for a potential violation of
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt
We propose a geometric multiparty extension of Clauser-Horne (CH) inequality. The standard CH inequality can be shown to be an implication of the fact that statistical separation between two events, $A$ and $B$, defined as $P(Aoplus B)$, where $Aoplu
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequali