ﻻ يوجد ملخص باللغة العربية
We investigate quantum nonlocality of a single-photon entangled state under feasible measurement techniques consisting of on-off and homodyne detections along with unitary operations of displacement and squeezing. We test for a potential violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality, in which each of the bipartite party has a freedom to choose between 2 measurement settings, each measurement yielding a binary outcome. We find that single-photon quantum nonlocality can be detected when two or less of the 4 total measurements are carried out by homodyne detection. The largest violation of the CHSH inequality is obtained when all four measurements are squeezed-and-displaced on-off detections. We test robustness of violations against imperfections in on-off detectors and single-photon sources, finding that the squeezed-and-displaced measurement schemes perform better than the displacement-only measurement schemes.
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt
Correlation self-testing of a theory addresses the question of whether we can identify the set of correlations realisable in a theory from its performance in a particular information processing task. Applied to quantum theory it aims to identify an i
We study the relation between the maximal violation of Svetlichnys inequality and the mixedness of quantum states and obtain the optimal state (i.e., maximally nonlocal mixed states, or MNMS, for each value of linear entropy) to beat the Clauser-Horn
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequali
We propose a geometric multiparty extension of Clauser-Horne (CH) inequality. The standard CH inequality can be shown to be an implication of the fact that statistical separation between two events, $A$ and $B$, defined as $P(Aoplus B)$, where $Aoplu