ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation-Informed Permutation of Qubits for Reducing Ansatz Depth in VQE

102   0   0.0 ( 0 )
 نشر من قبل Lukasz Cincio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Variational Quantum Eigensolver (VQE) is a method of choice to solve the electronic structure problem for molecules on near-term gate-based quantum computers. However, the circuit depth is expected to grow significantly with problem size. Increased depth can both degrade the accuracy of the results and reduce trainability. In this work, we propose a novel approach to reduce ansatz circuit depth. Our approach, called PermVQE, adds an additional optimization loop to VQE that permutes qubits in order to solve for the qubit Hamiltonian that minimizes long-range correlations in the ground state. The choice of permutations is based on mutual information, which is a measure of interaction between electrons in spin-orbitals. Encoding strongly interacting spin-orbitals into proximal qubits on a quantum chip naturally reduces the circuit depth needed to prepare the ground state. For representative molecular systems, LiH, H$_2$, (H$_2$)$_2$, H$_4$, and H$_3^+$, we demonstrate for linear qubit connectivity that placing entangled qubits in close proximity leads to shallower depth circuits required to reach a given eigenvalue-eigenvector accuracy. This approach can be extended to any qubit connectivity and can significantly reduce the depth required to reach a desired accuracy in VQE. Moreover, our approach can be applied to other variational quantum algorithms beyond VQE.



قيم البحث

اقرأ أيضاً

The multiplicative depth of a logic network over the gate basis ${land, oplus, eg}$ is the largest number of $land$ gates on any path from a primary input to a primary output in the network. We describe a dynamic programming based logic synthesis al gorithm to reduce the multiplicative depth in logic networks. It makes use of cut enumeration, tree balancing, and exclusive sum-of-products (ESOP) representations. Our algorithm has applications to cryptography and quantum computing, as a reduction in the multiplicative depth directly translates to a lower $T$-depth of the corresponding quantum circuit. Our experimental results show improvements in $T$-depth over state-of-the-art methods and over several hand-optimized quantum circuits for instances of AES, SHA, and floating-point arithmetic.
341 - Yi Fan , Changsu Cao , Xusheng Xu 2021
Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of quantum algorithms for large chemical systems remains a major challenge. In this work, we demonstrate how the circuit depth of the unitary coupled cluster ansatz in the algorithm of variational quantum eigensolver can be significantly reduced by an energy-sorting strategy. Specifically, subsets of excitation operators are pre-screened from the unitary coupled-cluster singles and doubles (UCCSD) operator pool according to its contribution to the total energy. The procedure is then iteratively repeated until the convergence of the final energy to within the chemical accuracy. For demonstration, this method has been sucessfully applied to systems of molecules and periodic hydrogen chain. Particularly, a reduction up to 14 times in the number of operators is observed while retaining the accuracy of the origin UCCSD operator pools. This method can be widely extended to other variational ansatz other than UCC.
We propose VQE circuit fabrics with advantageous properties for the simulation of strongly correlated ground and excited states of molecules and materials under the Jordan-Wigner mapping that can be implemented linearly locally and preserve all relev ant quantum numbers: the number of spin up ($alpha$) and down ($beta$) electrons and the total spin squared. We demonstrate that our entangler circuits are expressive already at low depth and parameter count, appear to become universal, and may be trainable without having to cross regions of vanishing gradient, when the number of parameters becomes sufficiently large and when these parameters are suitably initialized. One particularly appealing construction achieves this with just orbital rotations and pair exchange gates. We derive optimal four-term parameter shift rules for and provide explicit decompositions of our quantum number preserving gates and perform numerical demonstrations on highly correlated molecules on up to 20 qubits.
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of a Hamiltonian. Typically, it either aims to achieve high representation accuracy (at the expense of circuit depth), or uses a shallow circuit sacrificing the convergence to the exact ground state energy. Here, we propose the approach which can combine both low depth and improved precision, capitalizing on a genetically-improved ansatz for hardware-efficient VQE. Our solution, the multiobjective genetic variational quantum eigensolver (MoG-VQE), relies on multiobjective Pareto optimization, where topology of the variational ansatz is optimized using the non-dominated sorting genetic algorithm (NSGA-II). For each circuit topology, we optimize angles of single-qubit rotations using covariance matrix adaptation evolution strategy (CMA-ES) -- a derivative-free approach known to perform well for noisy black-box optimization. Our protocol allows preparing circuits that simultaneously offer high performance in terms of obtained energy precision and the number of two-qubit gates, thus trying to reach Pareto-optimal solutions. Tested for various molecules (H$_2$, H$_4$, H$_6$, BeH$_2$, LiH), we observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz. For 12-qubit LiH Hamiltonian this allows reaching chemical precision already at 12 CNOTs. Consequently, the algorithm shall lead to significant growth of the ground state fidelity for near-term devices.
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian. VQE has been proposed as an alternative to fully quantum algorithms such as quantu m phase estimation because fully quantum algorithms require quantum hardware that will not be accessible in the near future. VQE has been successfully applied to solve the electronic Schr{o}dinger equation for a variety of small molecules. However, the scalability of this method is limited by two factors: the complexity of the quantum circuits and the complexity of the classical optimization problem. Both of these factors are affected by choice of the variational ansatz used to represent the trial wave function. Hence, the construction of efficacious ansatz is an active area of research. Put another way, modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze for problems that map onto more than several qubits. In this review, we present recent developments in the field of designing effective ansatzes that fall into two categories -- chemistry inspired and hardware efficient -- that produce quantum circuits that are easier to run on modern hardware. We discuss the shortfalls of ansatzes originally formulated for VQE simulations, how they are addressed in more sophisticated methods, and the potential ways for further improvements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا