ﻻ يوجد ملخص باللغة العربية
The Variational Quantum Eigensolver (VQE) is a method of choice to solve the electronic structure problem for molecules on near-term gate-based quantum computers. However, the circuit depth is expected to grow significantly with problem size. Increased depth can both degrade the accuracy of the results and reduce trainability. In this work, we propose a novel approach to reduce ansatz circuit depth. Our approach, called PermVQE, adds an additional optimization loop to VQE that permutes qubits in order to solve for the qubit Hamiltonian that minimizes long-range correlations in the ground state. The choice of permutations is based on mutual information, which is a measure of interaction between electrons in spin-orbitals. Encoding strongly interacting spin-orbitals into proximal qubits on a quantum chip naturally reduces the circuit depth needed to prepare the ground state. For representative molecular systems, LiH, H$_2$, (H$_2$)$_2$, H$_4$, and H$_3^+$, we demonstrate for linear qubit connectivity that placing entangled qubits in close proximity leads to shallower depth circuits required to reach a given eigenvalue-eigenvector accuracy. This approach can be extended to any qubit connectivity and can significantly reduce the depth required to reach a desired accuracy in VQE. Moreover, our approach can be applied to other variational quantum algorithms beyond VQE.
The multiplicative depth of a logic network over the gate basis ${land, oplus, eg}$ is the largest number of $land$ gates on any path from a primary input to a primary output in the network. We describe a dynamic programming based logic synthesis al
Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of
We propose VQE circuit fabrics with advantageous properties for the simulation of strongly correlated ground and excited states of molecules and materials under the Jordan-Wigner mapping that can be implemented linearly locally and preserve all relev
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian. VQE has been proposed as an alternative to fully quantum algorithms such as quantu