ﻻ يوجد ملخص باللغة العربية
We propose VQE circuit fabrics with advantageous properties for the simulation of strongly correlated ground and excited states of molecules and materials under the Jordan-Wigner mapping that can be implemented linearly locally and preserve all relevant quantum numbers: the number of spin up ($alpha$) and down ($beta$) electrons and the total spin squared. We demonstrate that our entangler circuits are expressive already at low depth and parameter count, appear to become universal, and may be trainable without having to cross regions of vanishing gradient, when the number of parameters becomes sufficiently large and when these parameters are suitably initialized. One particularly appealing construction achieves this with just orbital rotations and pair exchange gates. We derive optimal four-term parameter shift rules for and provide explicit decompositions of our quantum number preserving gates and perform numerical demonstrations on highly correlated molecules on up to 20 qubits.
We develop a framework for analyzing layered quantum algorithms such as quantum alternating operator ansatze. Our framework relates quantum cost gradient operators, derived from the cost and mixing Hamiltonians, to classical cost difference functions
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of
Local quantum uncertainty captures purely quantum correlations excluding their classical counterpart. This measure is quantum discord type, however with the advantage that there is no need to carry out the complicated optimization procedure over meas
We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without pairing terms and both with short- and long-range hoppings. The models considered include the short-range Kitaev model and also cases in whic