ﻻ يوجد ملخص باللغة العربية
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers. Its success largely relies on the chosen variational ansatz, corresponding to a quantum circuit that prepares an approximate ground state of a Hamiltonian. Typically, it either aims to achieve high representation accuracy (at the expense of circuit depth), or uses a shallow circuit sacrificing the convergence to the exact ground state energy. Here, we propose the approach which can combine both low depth and improved precision, capitalizing on a genetically-improved ansatz for hardware-efficient VQE. Our solution, the multiobjective genetic variational quantum eigensolver (MoG-VQE), relies on multiobjective Pareto optimization, where topology of the variational ansatz is optimized using the non-dominated sorting genetic algorithm (NSGA-II). For each circuit topology, we optimize angles of single-qubit rotations using covariance matrix adaptation evolution strategy (CMA-ES) -- a derivative-free approach known to perform well for noisy black-box optimization. Our protocol allows preparing circuits that simultaneously offer high performance in terms of obtained energy precision and the number of two-qubit gates, thus trying to reach Pareto-optimal solutions. Tested for various molecules (H$_2$, H$_4$, H$_6$, BeH$_2$, LiH), we observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz. For 12-qubit LiH Hamiltonian this allows reaching chemical precision already at 12 CNOTs. Consequently, the algorithm shall lead to significant growth of the ground state fidelity for near-term devices.
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulati
The problem of finding the ground state energy of a Hamiltonian using a quantum computer is currently solved using either the quantum phase estimation (QPE) or variational quantum eigensolver (VQE) algorithms. For precision $epsilon$, QPE requires $O
Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape spe
The variational quantum eigensolver (VQE) is a promising algorithm to compute eigenstates and eigenenergies of a given quantum system that can be performed on a near-term quantum computer. Obtaining eigenstates and eigenenergies in a specific symmetr
Variational algorithms for strongly correlated chemical and materials systems are one of the most promising applications of near-term quantum computers. We present an extension to the variational quantum eigensolver that approximates the ground state