ﻻ يوجد ملخص باللغة العربية
The task of repeatedly solving parametrized partial differential equations (pPDEs) in, e.g. optimization or interactive applications, makes it imperative to design highly efficient and equally accurate surrogate models. The reduced basis method (RBM) presents as such an option. Enabled by a mathematically rigorous error estimator, RBM constructs a low-dimensional subspace of the parameter-induced high fidelity solution manifold from which an approximate solution is computed. It can improve efficiency by several orders of magnitudes leveraging an offline-online decomposition procedure. However, this decomposition, usually through the empirical interpolation method (EIM) when the PDE is nonlinear or its parameter dependence nonaffine, is either challenging to implement, or severely degrades online efficiency. In this paper, we augment and extend the EIM approach as a direct solver, as opposed to an assistant, for solving nonlinear pPDEs on the reduced level. The resulting method, called Reduced Over-Collocation method (ROC), is stable and capable of avoiding the efficiency degradation inherent to a traditional application of EIM. Two critical ingredients of the scheme are collocation at about twice as many locations as the dimension of the reduced solution space, and an efficient L1-norm-based error indicator for the strategic selection of the parameter values to build the reduced solution space. Together, these two ingredients render the proposed L1-ROC scheme both offline- and online-efficient. A distinctive feature is that the efficiency degradation appearing in alternative RBM approaches that utilize EIM for nonlinear and nonaffine problems is circumvented, both in the offline and online stages. Numerical tests on different families of time-dependent and steady-state nonlinear problems demonstrate the high efficiency and accuracy of L1-ROC and its superior stability performance.
The onerous task of repeatedly resolving certain parametrized partial differential equations (pPDEs) in, e.g. the optimization context, makes it imperative to design vastly more efficient numerical solvers without sacrificing any accuracy. The reduce
The need for multiple interactive, real-time simulations using different parameter values has driven the design of fast numerical algorithms with certifiable accuracies. The reduced basis method (RBM) presents itself as such an option. RBM features a
State estimation aims at approximately reconstructing the solution $u$ to a parametrized partial differential equation from $m$ linear measurements, when the parameter vector $y$ is unknown. Fast numerical recovery methods have been proposed based on
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea
In this paper, we propose a coupled Discrete Empirical Interpolation Method (DEIM) and Generalized Multiscale Finite element method (GMsFEM) to solve nonlinear parabolic equations with application to the Allen-Cahn equation. The Allen-Cahn equation i