ترغب بنشر مسار تعليمي؟ اضغط هنا

Kernel-based methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds

302   0   0.0 ( 0 )
 نشر من قبل Shixiao Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. Additionally, we also found positive results in solving the one-dimensional viscous Burgers equation where GPDM is adopted with a pseudo-spectral Galerkin framework to approximate nonlinear advection term.



قيم البحث

اقرأ أيضاً

289 - S. Singh , S. Sircar 2019
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens ional (1D) linear advection diffusion reaction (ADR) equation: (a) An explicit (RK2) temporal integration combined with the Optimal Upwind Compact Scheme (or OUCS3) and the central difference scheme (CD2) for second order spatial discretization, (b) a fully implicit mid-point rule for time integration coupled with the OUCS3 and the Leles compact scheme for first and second order spatial discretization, respectively, (c) An implicit (mid-point rule)-explicit (RK2) or IMEX time integration blended with OUCS3 and Leles compact scheme (where the IMEX time integration follows the same ideology as introduced by Ascher et al.), and (d) the IMEX (mid-point/RK2) time integration melded with the New Combined Compact Difference scheme (or NCCD scheme). Analysis reveal the superior resolution features of the IMEX-NCCD scheme including an enhanced region of neutral stability (a region where the amplification factor is close to one), a diminished region of spurious propagation characteristics (or a region of negative group velocity) and a smaller region of nonzero phase speed error. The dispersion error of these numerical schemes through the role of q-waves is further investigated using the novel error propagation equation for the 1D linear ADR equation. Again, the in silico experiments divulge excellent Dispersion Relation Preservation (DRP) properties of the IMEX-NCCD scheme including minimal dissipation via implicit filtering and negligible unphysical oscillations (or Gibbs phenomena) on coarser grids.
In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model wit h vanished high order derivative terms, which is close to the original PDE model in any order of this small parameter in the whole domain except a negligible transition layer. Based on this reduced forward model, we propose an efficient two step regularization algorithm for solving inverse source problems governed by the original PDE. Convergence rate results are studied for the proposed regularization algorithm, which shows that this simplification will not (asymptotically) decrease the accuracy of the inversion result when the measurement data contains noise. Numerical examples for both forward and inverse problems are given to show the efficiency of the proposed numerical approach.
In this paper, we introduce and analyse a surface finite element discretization of advection-diffusion equations with uncertain coefficients on evolving hypersurfaces. After stating unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation in appropriate Bochner spaces. Our theoretical findings are illustrated by numerical experiments in two and three space dimensions.
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compr essed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case.
139 - Zhichao Fang 2021
In this paper, the time fractional reaction-diffusion equations with the Caputo fractional derivative are solved by using the classical $L1$-formula and the finite volume element (FVE) methods on triangular grids. The existence and uniqueness for the fully discrete FVE scheme are given. The stability result and optimal textit{a priori} error estimate in $L^2(Omega)$-norm are derived, but it is difficult to obtain the corresponding results in $H^1(Omega)$-norm, so another analysis technique is introduced and used to achieve our goal. Finally, two numerical examples in different spatial dimensions are given to verify the feasibility and effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا