ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a coupled Discrete Empirical Interpolation Method (DEIM) and Generalized Multiscale Finite element method (GMsFEM) to solve nonlinear parabolic equations with application to the Allen-Cahn equation. The Allen-Cahn equation is a model for nonlinear reaction-diffusion process. It is often used to model interface motion in time, e.g. phase separation in alloys. The GMsFEM allows solving multiscale problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. In arXiv:1301.2866, it was shown that the GMsFEM provides a flexible tool to solve multiscale problems by constructing appropriate snapshot, offline and online spaces. In this paper, we solve a time dependent problem, where online enrichment is used. The main contribution is comparing different online enrichment methods. More specifically, we compare uniform online enrichment and adaptive methods. We also compare two kinds of adaptive methods. Furthermore, we use DEIM, a dimension reduction method to reduce the complexity when we evaluate the nonlinear terms. Our results show that DEIM can approximate the nonlinear term without significantly increasing the error. Finally, we apply our proposed method to the Allen Cahn equation.
The usual approach to model reduction for parametric partial differential equations (PDEs) is to construct a linear space $V_n$ which approximates well the solution manifold $mathcal{M}$ consisting of all solutions $u(y)$ with $y$ the vector of param
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 12
In this work, an $r$-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces th
In this paper, we develop a computational multiscale to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that
In this paper, we study a multiscale method for simulating a dual-continuum unsaturated flow problem within complex heterogeneous fractured porous media. Mathematically, each of the dual continua is modeled by a multiscale Richards equation (for pres