ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic and electronic structure of two-dimensional Mo(1-x)WxS2 alloys

80   0   0.0 ( 0 )
 نشر من قبل Abigail Graham
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Alloying enables engineering of the electronic structure of semiconductors for optoelectronic applications. Due to their similar lattice parameters, the two-dimensional semiconducting transition metal dichalcogenides of the MoWSeS group (MX2 where M= Mo or W and X=S or Se) can be grown as high-quality materials with low defect concentrations. Here we investigate the atomic and electronic structure of Mo(1-x)WxS2 alloys using a combination of high-resolution experimental techniques and simulations. Analysis of the Mo and W atomic positions in these alloys, grown by chemical vapour transport, shows that they are randomly distributed, consistent with Monte Carlo simulations that use interaction energies determined from first-principles calculations. Electronic structure parameters are directly determined from angle resolved photoemission spectroscopy measurements. These show that the spin-orbit splitting at the valence band edge increases linearly with W content from MoS2 to WS2, in agreement with linear-scaling density functional theory (LS-DFT) predictions. The spin-orbit splitting at the conduction band edge is predicted to reduce to zero at intermediate compositions. Despite this, polarisation-resolved photoluminescence spectra on monolayer Mo0.5W0.5S2 show significant circular dichroism, indicating that spin-valley locking is retained. These results demonstrate that alloying is an important tool for controlling the electronic structure of MX2 for spintronic and valleytronic applications.



قيم البحث

اقرأ أيضاً

In atomically thin transition metal dichalcogenide semiconductors, there is a crossover from indirect to direct bandgap as the thickness drops to one monolayer, which comes with a fast increase of the photoluminescence signal. Here, we show that for different alloy compositions of WS2(1-x)Se2x this trend may be significantly affected by the alloy content and we demonstrate that the sample with the highest Se ratio presents a strongly reduced effect. The highest micro-PL intensity is found for bilayer WS2(1-x)Se2x (x = 0.8) with a decrease of its maximum value by only a factor of 2 when passing from mono- to bi-layer. To better understand this factor and explore the layer-dependent band structure evolution of WS2(1-x)Se2x, we performed a nano-angle resolved photoemission spectroscopy study coupled with first-principles calculations. We find that the high micro-PL value for bilayer WS2(1-x)Se2x (x = 0.8) is due to the overlay of direct and indirect optical transitions. This peculiar high PL intensity in WS2(1-x)Se2x opens the way for spectrally tunable light-emitting devices.
304 - A. V. Kretinin , Y. Cao , J. S. Tu 2014
Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micron-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulphides and hBN are found to exhibit consistently high carrier mobilities of about 60,000 cm$^{2}$V$^{-1}$s$^{-1}$. In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ~ 1,000 cm$^{2}$ V$^{-1}$s$^{-1}$. We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.
We present the results of resonant photoemission spectroscopy experiments on the Mo$_{1-x}$Re$_{x}$ alloy compositions spanning over two electronic topological transitions (ETT) at the critical concentrations $x_{C1}$ = 0.05 and $x_{C2}$ = 0.11. The photoelectrons show an additional resonance ($R3$) in the constant initial state (CIS) spectra of the alloys along with two resonances ($R1$ and $R2$) which are similar to those observed in molybdenum. All the resonances show Fano-like line shapes. The asymmetry parameter $q$ of the resonances $R1$ and $R3$ of the alloys is observed to be large and negative. Our analysis suggests that the origin of large negative q is associated with phonon assisted inter band scattering between the Mo-like states and the narrow band that appeared due to the ETT.
We derive electronic tight-binding Hamiltonians for strained graphene, hexagonal boron nitride and transition metal dichalcogenides based on Wannier transformation of {it ab initio} density functional theory calculations. Our microscopic models inclu de strain effects to leading order that respect the hexagonal crystal symmetry and local crystal configuration, and are beyond the central force approximation which assumes only pair-wise distance dependence. Based on these models, we also derive and analyze the effective low-energy Hamiltonians. Our {it ab initio} approaches complement the symmetry group representation construction for such effective low-energy Hamiltonians and provide the values of the coefficients for each symmetry-allowed term. These models are relevant for the design of electronic device applications, since they provide the framework for describing the coupling of electrons to other degrees of freedom including phonons, spin and the electromagnetic field. The models can also serve as the basis for exploring the physics of many-body systems of interesting quantum phases.
The binary Re$_{1-x}$Mo$_x$ alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susce ptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re$_{1-x}$Mo$_x$ binary phase diagram, in all its four different solid phases: hcp-Mg ($P6_3/mmc$), $alpha$-Mn ($Ioverline{4}3m$), $beta$-CrFe ($P4_2/mnm$), and bcc-W ($Imoverline{3}m$), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re$_{1-x}$Mo$_x$ alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the $T_c$ is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several $alpha$-Mn-type Re$T$ alloys ($T$ = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg$_{10}$Ir$_{19}$B$_{16}$ or Nb$_{0.5}$Os$_{0.5}$, the Re$_{1-x}$Mo$_x$ alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the Re$T$ family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا