ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals

280   0   0.0 ( 0 )
 نشر من قبل Andrey Kretinin Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micron-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulphides and hBN are found to exhibit consistently high carrier mobilities of about 60,000 cm$^{2}$V$^{-1}$s$^{-1}$. In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ~ 1,000 cm$^{2}$ V$^{-1}$s$^{-1}$. We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.



قيم البحث

اقرأ أيضاً

Alloying enables engineering of the electronic structure of semiconductors for optoelectronic applications. Due to their similar lattice parameters, the two-dimensional semiconducting transition metal dichalcogenides of the MoWSeS group (MX2 where M= Mo or W and X=S or Se) can be grown as high-quality materials with low defect concentrations. Here we investigate the atomic and electronic structure of Mo(1-x)WxS2 alloys using a combination of high-resolution experimental techniques and simulations. Analysis of the Mo and W atomic positions in these alloys, grown by chemical vapour transport, shows that they are randomly distributed, consistent with Monte Carlo simulations that use interaction energies determined from first-principles calculations. Electronic structure parameters are directly determined from angle resolved photoemission spectroscopy measurements. These show that the spin-orbit splitting at the valence band edge increases linearly with W content from MoS2 to WS2, in agreement with linear-scaling density functional theory (LS-DFT) predictions. The spin-orbit splitting at the conduction band edge is predicted to reduce to zero at intermediate compositions. Despite this, polarisation-resolved photoluminescence spectra on monolayer Mo0.5W0.5S2 show significant circular dichroism, indicating that spin-valley locking is retained. These results demonstrate that alloying is an important tool for controlling the electronic structure of MX2 for spintronic and valleytronic applications.
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel d is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its 4-band and 2-band continuum approximations, and the 4-band model is shown to be always a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, either made out of SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point to understand the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, as the second-nearest-neighbor hopping energies $t$ (in-plane) and $gamma_{4}$ (inter-layer), and the on-site energy $Delta$.
Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane pre sent in nature -just one atom thick- it is the strongest material, it is transparent and it is a very good conductor with room temperature charge mobilities larger than the typical mobilities found in silicon. The significance played by this new material system is even more apparent when considering that graphene is the thinnest member of a larger family: the few-layer graphene materials. Even though several physical properties are shared between graphene and its few-layers, recent theoretical and experimental advances demonstrate that each specific thickness of few-layer graphene is a material with unique physical properties.
117 - Chiun-Yan Lin , , Ming-Fa Lin 2019
The generalized tight-binding model is developed to investigate the magneto-electronic properties in twisted bilayer graphene system. All the interlayer and intralayer atomic interactions are included in the Moire superlattice. The twisted bilayer gr aphene system is a zero-gap semiconductor with double-degenerate Dirac-cone structures, and saddle-point energy dispersions appearing at low energies for cases of small twisting angles. There exist rich and unique magnetic quantization phenomena, in which many Landau-level subgroups are induced due to specific Moire zone folding through modulating the various stacking angles. The Landau-level spectrum shows hybridized characteristics associated with the those in monolayer, and AA $&$ AB stackings. The complex relations among the different sublattices on the same and different graphene layers are explored in detail.
Multilayered van der Waals structures often lack periodicity, which difficults their modeling. Building on previous work for bilayers, we develop a tight-binding based, momentum space formalism capable of describing incommensurate multilayered van de r Waals structures for arbitrary lattice mismatch and/or misalignment between different layers. We demonstrate how the developed formalism can be used to model angle-resolved photoemission spectroscopy measurements, and scanning tunnelling spectroscopy which can probe the local and total density of states. The general method is then applied to incommensurate twisted trilayer graphene structures. It is found that the coupling between the three layers can significantly affect the low energy spectral properties, which cannot be simply attributed to the pairwise hybridization between the layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا