ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Learning++: Incorporating Annotators Rationale using Local Model Explanation

114   0   0.0 ( 0 )
 نشر من قبل Bhavya Ghai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new active learning (AL) framework, Active Learning++, which can utilize an annotators labels as well as its rationale. Annotators can provide their rationale for choosing a label by ranking input features based on their importance for a given query. To incorporate this additional input, we modified the disagreement measure for a bagging-based Query by Committee (QBC) sampling strategy. Instead of weighing all committee models equally to select the next instance, we assign higher weight to the committee model with higher agreement with the annotators ranking. Specifically, we generated a feature importance-based local explanation for each committee model. The similarity score between feature rankings provided by the annotator and the local model explanation is used to assign a weight to each corresponding committee model. This approach is applicable to any kind of ML model using model-agnostic techniques to generate local explanation such as LIME. With a simulation study, we show that our framework significantly outperforms a QBC based vanilla AL framework.

قيم البحث

اقرأ أيضاً

Learning from multiple annotators aims to induce a high-quality classifier from training instances, where each of them is associated with a set of possibly noisy labels provided by multiple annotators under the influence of their varying abilities an d own biases. In modeling the probability transition process from latent true labels to observed labels, most existing methods adopt class-level confusion matrices of annotators that observed labels do not depend on the instance features, just determined by the true labels. It may limit the performance that the classifier can achieve. In this work, we propose the noise transition matrix, which incorporates the influence of instance features on annotators performance based on confusion matrices. Furthermore, we propose a simple yet effective learning framework, which consists of a classifier module and a noise transition matrix module in a unified neural network architecture. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods.
Most state-of-the-art machine learning algorithms induce black-box models, preventing their application in many sensitive domains. Hence, many methodologies for explaining machine learning models have been proposed to address this problem. In this wo rk, we introduce strategies to improve local explanations taking into account the distribution of the data used to train the black-box models. We show that our approach, MeLIME, produces more meaningful explanations compared to other techniques over different ML models, operating on various types of data. MeLIME generalizes the LIME method, allowing more flexible perturbation sampling and the use of different local interpretable models. Additionally, we introduce modifications to standard training algorithms of local interpretable models fostering more robust explanations, even allowing the production of counterfactual examples. To show the strengths of the proposed approach, we include experiments on tabular data, images, and text; all showing improved explanations. In particular, MeLIME generated more meaningful explanations on the MNIST dataset than methods such as GuidedBackprop, SmoothGrad, and Layer-wise Relevance Propagation. MeLIME is available on https://github.com/tiagobotari/melime.
In this work we consider active local learning: given a query point $x$, and active access to an unlabeled training set $S$, output the prediction $h(x)$ of a near-optimal $h in H$ using significantly fewer labels than would be needed to actually lea rn $h$ fully. In particular, the number of label queries should be independent of the complexity of $H$, and the function $h$ should be well-defined, independent of $x$. This immediately also implies an algorithm for distance estimation: estimating the value $opt(H)$ from many fewer labels than needed to actually learn a near-optimal $h in H$, by running local learning on a few random query points and computing the average error. For the hypothesis class consisting of functions supported on the interval $[0,1]$ with Lipschitz constant bounded by $L$, we present an algorithm that makes $O(({1 / epsilon^6}) log(1/epsilon))$ label queries from an unlabeled pool of $O(({L / epsilon^4})log(1/epsilon))$ samples. It estimates the distance to the best hypothesis in the class to an additive error of $epsilon$ for an arbitrary underlying distribution. We further generalize our algorithm to more than one dimensions. We emphasize that the number of labels used is independent of the complexity of the hypothesis class which depends on $L$. Furthermore, we give an algorithm to locally estimate the values of a near-optimal function at a few query points of interest with number of labels independent of $L$. We also consider the related problem of approximating the minimum error that can be achieved by the Nadaraya-Watson estimator under a linear diagonal transformation with eigenvalues coming from a small range. For a $d$-dimensional pointset of size $N$, our algorithm achieves an additive approximation of $epsilon$, makes $tilde{O}({d}/{epsilon^2})$ queries and runs in $tilde{O}({d^2}/{epsilon^{d+4}}+{dN}/{epsilon^2})$ time.
78 - Ruiwen Li , Jiani Li 2021
Recent years have seen the introduction of a range of methods for post-hoc explainability of image classifier predictions. However, these post-hoc explanations may not always align perfectly with classifier predictions, which poses a significant chal lenge when attempting to debug models based on such explanations. To this end, we seek a methodology that can improve alignment between model predictions and explanation method that is both agnostic to the model and explanation classes and which does not require ground truth explanations. We achieve this through a novel explanation-driven data augmentation (EDDA) method that augments the training data with occlusions of existing data stemming from model-explanations; this is based on the simple motivating principle that occluding salient regions for the model prediction should decrease the model confidence in the prediction, while occluding non-salient regions should not change the prediction -- if the model and explainer are aligned. To verify that this augmentation method improves model and explainer alignment, we evaluate the methodology on a variety of datasets, image classification models, and explanation methods. We verify in all cases that our explanation-driven data augmentation method improves alignment of the model and explanation in comparison to no data augmentation and non-explanation driven data augmentation methods. In conclusion, this approach provides a novel model- and explainer-agnostic methodology for improving alignment between model predictions and explanations, which we see as a critical step forward for practical deployment and debugging of image classification models.
Feature attribution is widely used in interpretable machine learning to explain how influential each measured input feature value is for an output inference. However, measurements can be uncertain, and it is unclear how the awareness of input uncerta inty can affect the trust in explanations. We propose and study two approaches to help users to manage their perception of uncertainty in a model explanation: 1) transparently show uncertainty in feature attributions to allow users to reflect on, and 2) suppress attribution to features with uncertain measurements and shift attribution to other features by regularizing with an uncertainty penalty. Through simulation experiments, qualitative interviews, and quantitative user evaluations, we identified the benefits of moderately suppressing attribution uncertainty, and concerns regarding showing attribution uncertainty. This work adds to the understanding of handling and communicating uncertainty for model interpretability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا