ترغب بنشر مسار تعليمي؟ اضغط هنا

A dataset and classification model for Malay, Hindi, Tamil and Chinese music

168   0   0.0 ( 0 )
 نشر من قبل Fajilatun Nahar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a new dataset, with musical excepts from the three main ethnic groups in Singapore: Chinese, Malay and Indian (both Hindi and Tamil). We use this new dataset to train different classification models to distinguish the origin of the music in terms of these ethnic groups. The classification models were optimized by exploring the use of different musical features as the input. Both high level features, i.e., musically meaningful features, as well as low level features, i.e., spectrogram based features, were extracted from the audio files so as to optimize the performance of the different classification models.

قيم البحث

اقرأ أيضاً

We propose in this work a multi-view learning approach for audio and music classification. Considering four typical low-level representations (i.e. different views) commonly used for audio and music recognition tasks, the proposed multi-view network consists of four subnetworks, each handling one input types. The learned embedding in the subnetworks are then concatenated to form the multi-view embedding for classification similar to a simple concatenation network. However, apart from the joint classification branch, the network also maintains four classification branches on the single-view embedding of the subnetworks. A novel method is then proposed to keep track of the learning behavior on the classification branches and adapt their weights to proportionally blend their gradients for network training. The weights are adapted in such a way that learning on a branch that is generalizing well will be encouraged whereas learning on a branch that is overfitting will be slowed down. Experiments on three different audio and music classification tasks show that the proposed multi-view network not only outperforms the single-view baselines but also is superior to the multi-view baselines based on concatenation and late fusion.
Deep learning is very data hungry, and supervised learning especially requires massive labeled data to work well. Machine listening research often suffers from limited labeled data problem, as human annotations are costly to acquire, and annotations for audio are time consuming and less intuitive. Besides, models learned from labeled dataset often embed biases specific to that particular dataset. Therefore, unsupervised learning techniques become popular approaches in solving machine listening problems. Particularly, a self-supervised learning technique utilizing reconstructions of multiple hand-crafted audio features has shown promising results when it is applied to speech domain such as emotion recognition and automatic speech recognition (ASR). In this paper, we apply self-supervised and multi-task learning methods for pre-training music encoders, and explore various design choices including encoder architectures, weighting mechanisms to combine losses from multiple tasks, and worker selections of pretext tasks. We investigate how these design choices interact with various downstream music classification tasks. We find that using various music specific workers altogether with weighting mechanisms to balance the losses during pre-training helps improve and generalize to the downstream tasks.
We present a new approach to harmonic analysis that is trained to segment music into a sequence of chord spans tagged with chord labels. Formulated as a semi-Markov Conditional Random Field (semi-CRF), this joint segmentation and labeling approach en ables the use of a rich set of segment-level features, such as segment purity and chord coverage, that capture the extent to which the events in an entire segment of music are compatible with a candidate chord label. The new chord recognition model is evaluated extensively on three corpora of classical music and a newly created corpus of rock music. Experimental results show that the semi-CRF model performs substantially better than previous approaches when trained on a sufficient number of labeled examples and remains competitive when the amount of training data is limited.
Speech evaluation is an essential component in computer-assisted language learning (CALL). While speech evaluation on English has been popular, automatic speech scoring on low resource languages remains challenging. Work in this area has focused on m onolingual specific designs and handcrafted features stemming from resource-rich languages like English. Such approaches are often difficult to generalize to other languages, especially if we also want to consider suprasegmental qualities such as rhythm. In this work, we examine three different languages that possess distinct rhythm patterns: English (stress-timed), Malay (syllable-timed), and Tamil (mora-timed). We exploit robust feature representations inspired by music processing and vector representation learning. Empirical validations show consistent gains for all three languages when predicting pronunciation, rhythm and intonation performance.
Audio event classification is an important task for several applications such as surveillance, audio, video and multimedia retrieval etc. There are approximately 3M people with hearing loss who cant perceive events happening around them. This paper e stablishes the CURE dataset which contains curated set of specific audio events most relevant for people with hearing loss. We propose a ladder network based audio event classifier that utilizes 5s sound recordings derived from the Freesound project. We adopted the state-of-the-art convolutional neural network (CNN) embeddings as audio features for this task. We also investigate extreme learning machine (ELM) for event classification. In this study, proposed classifiers are compared with support vector machine (SVM) baseline. We propose signal and feature normalization that aims to reduce the mismatch between different recordings scenarios. Firstly, CNN is trained on weakly labeled Audioset data. Next, the pre-trained model is adopted as feature extractor for proposed CURE corpus. We incorporate ESC-50 dataset as second evaluation set. Results and discussions validate the superiority of Ladder network over ELM and SVM classifier in terms of robustness and increased classification accuracy. While Ladder network is robust to data mismatches, simpler SVM and ELM classifiers are sensitive to such mismatches, where the proposed normalization techniques can play an important role. Experimental studies with ESC-50 and CURE corpora elucidate the differences in dataset complexity and robustness offered by proposed approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا