ﻻ يوجد ملخص باللغة العربية
We present a new approach to harmonic analysis that is trained to segment music into a sequence of chord spans tagged with chord labels. Formulated as a semi-Markov Conditional Random Field (semi-CRF), this joint segmentation and labeling approach enables the use of a rich set of segment-level features, such as segment purity and chord coverage, that capture the extent to which the events in an entire segment of music are compatible with a candidate chord label. The new chord recognition model is evaluated extensively on three corpora of classical music and a newly created corpus of rock music. Experimental results show that the semi-CRF model performs substantially better than previous approaches when trained on a sufficient number of labeled examples and remains competitive when the amount of training data is limited.
The utilization of deep learning techniques in generating various contents (such as image, text, etc.) has become a trend. Especially music, the topic of this paper, has attracted widespread attention of countless researchers.The whole process of pro
Score-based generative models and diffusion probabilistic models have been successful at generating high-quality samples in continuous domains such as images and audio. However, due to their Langevin-inspired sampling mechanisms, their application to
Music is often experienced as a progression of concurrent streams of notes, or voices. The degree to which this happens depends on the position along a voice-leading continuum, ranging from monophonic, to homophonic, to polyphonic, which complicates
Audio signals are often represented as spectrograms and treated as 2D images. In this light, deep convolutional architectures are widely used for music audio tasks even though these two data types have very different structures. In this work, we atte
In natural language processing (NLP), the semantic similarity task requires large-scale, high-quality human-annotated labels for fine-tuning or evaluation. By contrast, in cases of music similarity, such labels are expensive to collect and largely de