ﻻ يوجد ملخص باللغة العربية
Stability and safety are two important aspects in safety-critical control of dynamical systems. It has been a well established fact in control theory that stability properties can be characterized by Lyapunov functions. Reachability properties can also be naturally captured by Lyapunov functions for finite-time stability. Motivated by safety-critical control applications, such as in autonomous systems and robotics, there has been a recent surge of interests in characterizing safety properties using barrier functions. Lyapunov and barrier functions conditions, however, are sometimes viewed as competing objectives. In this paper, we provide a unified theoretical treatment of Lyapunov and barrier functions in terms of converse theorems for stability properties with safety guarantees and reach-avoid-stay type specifications. We show that if a system (modeled as a perturbed dynamical system) possesses a stability with safety property, then there exists a smooth Lyapunov function to certify such a property. This Lyapunov function is shown to be defined on the entire set of initial conditions from which solutions satisfy this property. A similar but slightly weaker statement is made for reach-avoid-stay specifications. We show by a simple example that the latter statement cannot be strengthened without additional assumptions.
We introduce High-Relative Degree Stochastic Control Lyapunov functions and Barrier Functions as a means to ensure asymptotic stability of the system and incorporate state dependent high relative degree safety constraints on a non-linear stochastic s
The probabilistic reachability problems of nondeterministic systems are studied. Based on the existing studies, the definition of probabilistic reachable sets is generalized by taking into account time-varying target set and obstacle. A numerical met
A method is presented to learn neural network (NN) controllers with stability and safety guarantees through imitation learning (IL). Convex stability and safety conditions are derived for linear time-invariant plant dynamics with NN controllers by me
Control barrier functions have shown great success in addressing control problems with safety guarantees. These methods usually find the next safe control input by solving an online quadratic programming problem. However, model uncertainty is a big c
This paper proposes a safety analysis method that facilitates a tunable balance between the worst-case and risk-neutral perspectives. First, we define a risk-sensitive safe set to specify the degree of safety attained by a stochastic system. This set