ﻻ يوجد ملخص باللغة العربية
This paper proposes a safety analysis method that facilitates a tunable balance between the worst-case and risk-neutral perspectives. First, we define a risk-sensitive safe set to specify the degree of safety attained by a stochastic system. This set is defined as a sublevel set of the solution to an optimal control problem that is expressed using the Conditional Value-at-Risk (CVaR) measure. This problem does not satisfy Bellmans Principle, thus our next contribution is to show how risk-sensitive safe sets can be under-approximated by the solution to a CVaR-Markov Decision Process. We adopt an existing value iteration algorithm to find an approximate solution to the reduced problem for a class of linear systems. Then, we develop a realistic numerical example of a stormwater system to show that this approach can be applied to non-linear systems. Finally, we compare the CVaR criterion to the exponential disutility criterion. The latter allocates control effort evenly across the cost distribution to reduce variance, while the CVaR criterion focuses control effort on a given worst-case quantile--where it matters most for safety.
This paper develops a safety analysis method for stochastic systems that is sensitive to the possibility and severity of rare harmful outcomes. We define risk-sensitive safe sets as sub-level sets of the solution to a non-standard optimal control pro
The standard approach to risk-averse control is to use the Exponential Utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping $var
Risk-sensitive safety analysis is a safety analysis method for stochastic systems on Borel spaces that uses a risk functional from finance called Conditional Value-at-Risk (CVaR). CVaR provides a particularly expressive way to quantify the safety of
A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing th
In this paper, we consider discrete-time partially observed mean-field games with the risk-sensitive optimality criterion. We introduce risk-sensitivity behaviour for each agent via an exponential utility function. In the game model, each agent is we