ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Reach-Avoid Reachability in Nondeterministic Systems with Time-VaryingTargets and Obstacles

149   0   0.0 ( 0 )
 نشر من قبل Wei Liao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The probabilistic reachability problems of nondeterministic systems are studied. Based on the existing studies, the definition of probabilistic reachable sets is generalized by taking into account time-varying target set and obstacle. A numerical method is proposed to compute probabilistic reachable sets. First, a scalar function in the state space is constructed by backward recursion and grid interpolation, and then the probability reachable set is represented as a nonzero level set of this scalar function. In addition, based on the constructed scalar function, the optimal control policy can be designed. At the end of this paper, some examples are taken to illustrate the validity and accuracy of the proposed method.



قيم البحث

اقرأ أيضاً

152 - Jun Liu , Yiming Meng , Yinan Li 2020
Stability and safety are two important aspects in safety-critical control of dynamical systems. It has been a well established fact in control theory that stability properties can be characterized by Lyapunov functions. Reachability properties can al so be naturally captured by Lyapunov functions for finite-time stability. Motivated by safety-critical control applications, such as in autonomous systems and robotics, there has been a recent surge of interests in characterizing safety properties using barrier functions. Lyapunov and barrier functions conditions, however, are sometimes viewed as competing objectives. In this paper, we provide a unified theoretical treatment of Lyapunov and barrier functions in terms of converse theorems for stability properties with safety guarantees and reach-avoid-stay type specifications. We show that if a system (modeled as a perturbed dynamical system) possesses a stability with safety property, then there exists a smooth Lyapunov function to certify such a property. This Lyapunov function is shown to be defined on the entire set of initial conditions from which solutions satisfy this property. A similar but slightly weaker statement is made for reach-avoid-stay specifications. We show by a simple example that the latter statement cannot be strengthened without additional assumptions.
We study the class of reach-avoid dynamic games in which multiple agents interact noncooperatively, and each wishes to satisfy a distinct target condition while avoiding a failure condition. Reach-avoid games are commonly used to express safety-criti cal optimal control problems found in mobile robot motion planning. While a wide variety of approaches exist for these motion planning problems, we focus on finding time-consistent solutions, in which planned future motion is still optimal despite prior suboptimal actions. Though abstract, time consistency encapsulates an extremely desirable property: namely, time-consistent motion plans remain optimal even when a robots motion diverges from the plan early on due to, e.g., intrinsic dynamic uncertainty or extrinsic environment disturbances. Our main contribution is a computationally-efficient algorithm for multi-agent reach-avoid games which renders time-consistent solutions. We demonstrate our approach in a simulated driving scenario, where we construct a two-player adversarial game to model a range of defensive driving behaviors.
In the current control design of safety-critical autonomous systems, formal verification techniques are typically applied after the controller is designed to evaluate whether the required properties (e.g., safety) are satisfied. However, due to the i ncreasing system complexity and the fundamental hardness of designing a controller with formal guarantees, such an open-loop process of design-then-verify often results in many iterations and fails to provide the necessary guarantees. In this paper, we propose a correct-by-construction control learning framework that integrates the verification into the control design process in a closed-loop manner, i.e., design-while-verify. Specifically, we leverage the verification results (computed reachable set of the system state) to construct feedback metrics for control learning, which measure how likely the current design of control parameters can meet the required reach-avoid property for safety and goal-reaching. We formulate an optimization problem based on such metrics for tuning the controller parameters, and develop an approximated gradient descent algorithm with a difference method to solve the optimization problem and learn the controller. The learned controller is formally guaranteed to meet the required reach-avoid property. By treating verifiability as a first-class objective and effectively leveraging the verification results during the control learning process, our approach can significantly improve the chance of finding a control design with formal property guarantees. This is demonstrated via a set of experiments on both linear and non-linear systems that use model-based or neural network based controllers.
In this work, we perform safety analysis of linear dynamical systems with uncertainties. Instead of computing a conservative overapproximation of the reachable set, our approach involves computing a statistical approximate reachable set. As a result, the guarantees provided by our method are probabilistic in nature. In this paper, we provide two different techniques to compute statistical approximate reachable set. We have implemented our algorithms in a python based prototype and demonstrate the applicability of our approaches on various case studies. We also provide an empirical comparison between the two proposed methods and with Flow*.
Reachable set computation is an important technique for the verification of safety properties of dynamical systems. In this paper, we investigate reachable set computation for discrete nonlinear systems based on parallelotope bundles. The algorithm r elies on computing an upper bound on the supremum of a nonlinear function over a rectangular domain, which has been traditionally done using Bernstein polynomials. We strive to remove the manual step of parallelotope template selection to make the method fully automatic. Furthermore, we show that changing templates dynamically during computations cans improve accuracy. To this end, we investigate two techniques for generating the template directions. The first technique approximates the dynamics as a linear transformation and generates templates using this linear transformation. The second technique uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We have implemented our approach in a Python-based tool called Kaa and improve its performance by two main enhancements. The tool is modular and use two types of global optimization solvers, the first using Bernstein polynomials and the second using NASAs Kodiak nonlinear optimization library. Second, we leverage the natural parallelism of the reachability algorithm and parallelize the Kaa implementation. We demonstrate the improved accuracy of our approach on several standard nonlinear benchmark systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا