ﻻ يوجد ملخص باللغة العربية
Some of the oldest and most important applications of thermodynamics are operations of refrigeration as well as production of useful energy. Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harnessing quantum effects to such operations. In this review we present the recent developments regarding the role of quantum coherences in the performances of thermal machines --the devices realising the above thermodynamic operations. While this is known to be an intricate subject, in part because being largely model-dependent, the review of the recent results allow us to identify some general tendencies and to suggest some future directions.
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theor
The precise estimation of small parameters is a challenging problem in quantum metrology. Here, we introduce a protocol for accurately measuring weak magnetic fields using a two-level magnetometer, which is coupled to two (hot and cold) thermal baths
We explore the consequences of periodically modulating a quantum two-level system (TLS) with an asymmetric pulse when the system is in contact with thermal baths. By adopting the Floquet-Lindblad formalism for our analysis, we find that the unequal u
Recent years have enjoyed an overwhelming interest in quantum thermodynamics, a field of research aimed at understanding thermodynamic tasks performed in the quantum regime. Further progress, however, seems to be obstructed by the lack of experimenta
We study coupled quantum systems as the working media of thermodynamic machines. Under a suitable phase-space transformation, the coupled systems can be expressed as a composition of independent subsystems. We find that for the coupled systems, the f