ﻻ يوجد ملخص باللغة العربية
SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC.
In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore
*** To appear in Theory and Practice of Logic Programming (TPLP) *** Within the context of constraint solving, a portfolio approach allows one to exploit the synergy between different solvers in order to create a globally better solver. In this pap
Hyper-heuristics are a novel tool. They deal with complex optimization problems where standalone solvers exhibit varied performance. Among such a tool reside selection hyper-heuristics. By combining the strengths of each solver, this kind of hyper-he
Portfolio-based algorithm selection has seen tremendous practical success over the past two decades. This algorithm configuration procedure works by first selecting a portfolio of diverse algorithm parameter settings, and then, on a given problem ins
Heuristics in theorem provers are often parameterised. Modern theorem provers such as Vampire utilise a wide array of heuristics to control the search space explosion, thereby requiring optimisation of a large set of parameters. An exhaustive search