ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing Selection Hyper-heuristics via Feature Transformations

53   0   0.0 ( 0 )
 نشر من قبل Ivan Amaya
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyper-heuristics are a novel tool. They deal with complex optimization problems where standalone solvers exhibit varied performance. Among such a tool reside selection hyper-heuristics. By combining the strengths of each solver, this kind of hyper-heuristic offers a more robust tool. However, their effectiveness is highly dependent on the features used to link them with the problem that is being solved. Aiming at enhancing selection hyper-heuristics, in this paper we propose two types of transformation: explicit and implicit. The first one directly changes the distribution of critical points within the feature domain while using a Euclidean distance to measure proximity. The second one operates indirectly by preserving the distribution of critical points but changing the distance metric through a kernel function. We focus on analyzing the effect of each kind of transformation, and of their combinations. We test our ideas in the domain of constraint satisfaction problems because of their popularity and many practical applications. In this work, we compare the performance of our proposals against those of previously published data. Furthermore, we expand on previous research by increasing the number of analyzed features. We found that, by incorporating transformations into the model of selection hyper-heuristics, overall performance can be improved, yielding more stable results. However, combining implicit and explicit transformations was not as fruitful. Additionally, we ran some confirmatory tests on the domain of knapsack problems. Again, we observed improved stability, leading to the generation of hyper-heuristics whose profit had a standard deviation between 20% and 30% smaller.



قيم البحث

اقرأ أيضاً

SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC.
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m odels across different experimental conditions for detecting direct causal links. However, these approaches generally do not scale well with the number of explanatory variables, are difficult to extend to nonlinear relationships, and require data across different experiments. Inspired by {em Debiased} machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the direct causal parent of the response. We propose an algorithm that works for purely observational data, while also offering theoretical guarantees, including the case of partially nonlinear relationships. Requiring only one estimation for each variable, we can apply our approach even to large graphs, demonstrating significant improvements compared to established approaches.
In this paper, we study the application of sparse principal component analysis (PCA) to clustering and feature selection problems. Sparse PCA seeks sparse factors, or linear combinations of the data variables, explaining a maximum amount of variance in the data while having only a limited number of nonzero coefficients. PCA is often used as a simple clustering technique and sparse factors allow us here to interpret the clusters in terms of a reduced set of variables. We begin with a brief introduction and motivation on sparse PCA and detail our implementation of the algorithm in dAspremont et al. (2005). We then apply these results to some classic clustering and feature selection problems arising in biology.
92 - Yu Xue , Yihang Tang , Xin Xu 2021
Feature selection (FS) is an important research topic in machine learning. Usually, FS is modelled as a+ bi-objective optimization problem whose objectives are: 1) classification accuracy; 2) number of features. One of the main issues in real-world a pplications is missing data. Databases with missing data are likely to be unreliable. Thus, FS performed on a data set missing some data is also unreliable. In order to directly control this issue plaguing the field, we propose in this study a novel modelling of FS: we include reliability as the third objective of the problem. In order to address the modified problem, we propose the application of the non-dominated sorting genetic algorithm-III (NSGA-III). We selected six incomplete data sets from the University of California Irvine (UCI) machine learning repository. We used the mean imputation method to deal with the missing data. In the experiments, k-nearest neighbors (K-NN) is used as the classifier to evaluate the feature subsets. Experimental results show that the proposed three-objective model coupled with NSGA-III efficiently addresses the FS problem for the six data sets included in this study.
The Travelling Salesman Problem (TSP) is a classical NP-hard problem and has broad applications in many disciplines and industries. In a large scale location-based services system, users issue TSP queries concurrently, where a TSP query is a TSP inst ance with $n$ points. In the literature, many advanced TSP solvers are developed to find high-quality solutions. Such solvers can solve some TSP instances efficiently but may take an extremely long time for some other instances. Due to the diversity of TSP instances, it is well-known that there exists no universal best solver dominating all other solvers on all possible TSP instances. To solve TSP efficiently, in addition to developing new TSP solvers, it needs to find a per-instance solver for each TSP instance, which is known as the TSP solver selection problem. In this paper, for the first time, we propose a deep learning framework, CTAS, for TSP solver selection in an end-to-end manner. Specifically, CTAS exploits deep convolutional neural networks to extract informative features from TSP instances and involves data argumentation strategies to handle the scarcity of labeled TSP instances. Moreover, to support large scale TSP solver selection, we construct a challenging TSP benchmark dataset with 6,000 instances, which is known as the largest TSP benchmark. Our CTAS achieves over 2$times$ speedup of the average running time, comparing the single best solver, and outperforms the state-of-the-art statistical models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا