ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-order Quasi-Monte Carlo Training of Deep Neural Networks

85   0   0.0 ( 0 )
 نشر من قبل T. Konstantin Rusch
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design. Our analysis reveals higher-order consistent, deterministic choices of training points in the input data space for deep and shallow Neural Networks with holomorphic activation functions such as tanh. These novel training points are proved to facilitate higher-order decay (in terms of the number of training samples) of the underlying generalization error, with consistency error bounds that are free from the curse of dimensionality in the input data space, provided that DNN weights in hidden layers satisfy certain summability conditions. We present numerical experiments for DtO maps from elliptic and parabolic PDEs with uncertain inputs that confirm the theoretical analysis.



قيم البحث

اقرأ أيضاً

93 - Lei Zhang 2021
This paper presents a proper generalized decomposition (PGD) based reduced-order model of hierarchical deep-learning neural networks (HiDeNN). The proposed HiDeNN-PGD method keeps both advantages of HiDeNN and PGD methods. The automatic mesh adaptivi ty makes the HiDeNN-PGD more accurate than the finite element method (FEM) and conventional PGD, using a fraction of the FEM degrees of freedom. The accuracy and convergence of the method have been studied theoretically and numerically, with a comparison to different methods, including FEM, PGD, HiDeNN and Deep Neural Networks. In addition, we theoretically showed that the PGD converges to FEM at increasing modes, and the PGD error is a direct sum of the FEM error and the mode reduction error. The proposed HiDeNN-PGD performs high accuracy with orders of magnitude fewer degrees of freedom, which shows a high potential to achieve fast computations with a high level of accuracy for large-size engineering problems.
In this work, we describe a new approach that uses deep neural networks (DNN) to obtain regularization parameters for solving inverse problems. We consider a supervised learning approach, where a network is trained to approximate the mapping from obs ervation data to regularization parameters. Once the network is trained, regularization parameters for newly obtained data can be computed by efficient forward propagation of the DNN. We show that a wide variety of regularization functionals, forward models, and noise models may be considered. The network-obtained regularization parameters can be computed more efficiently and may even lead to more accurate solutions compared to existing regularization parameter selection methods. We emphasize that the key advantage of using DNNs for learning regularization parameters, compared to previous works on learning via optimal experimental design or empirical Bayes risk minimization, is greater generalizability. That is, rather than computing one set of parameters that is optimal with respect to one particular design objective, DNN-computed regularization parameters are tailored to the specific features or properties of the newly observed data. Thus, our approach may better handle cases where the observation is not a close representation of the training set. Furthermore, we avoid the need for expensive and challenging bilevel optimization methods as utilized in other existing training approaches. Numerical results demonstrate the potential of using DNNs to learn regularization parameters.
Multifidelity Monte Carlo methods rely on a hierarchy of possibly less accurate but statistically correlated simplified or reduced models, in order to accelerate the estimation of statistics of high-fidelity models without compromising the accuracy o f the estimates. This approach has recently gained widespread attention in uncertainty quantification. This is partly due to the availability of optimal strategies for the estimation of the expectation of scalar quantities-of-interest. In practice, the optimal strategy for the expectation is also used for the estimation of variance and sensitivity indices. However, a general strategy is still lacking for vector-valued problems, nonlinearly statistically-dependent models, and estimators for which a closed-form expression of the error is unavailable. The focus of the present work is to generalize the standard multifidelity estimators to the above cases. The proposed generalized estimators lead to an optimization problem that can be solved analytically and whose coefficients can be estimated numerically with few runs of the high- and low-fidelity models. We analyze the performance of the proposed approach on a selected number of experiments, with a particular focus on cardiac electrophysiology, where a hierarchy of physics-based low-fidelity models is readily available.
We propose an accurate data-driven numerical scheme to solve Stochastic Differential Equations (SDEs), by taking large time steps. The SDE discretization is built up by means of a polynomial chaos expansion method, on the basis of accurately determin ed stochastic collocation (SC) points. By employing an artificial neural network to learn these SC points, we can perform Monte Carlo simulations with large time steps. Error analysis confirms that this data-driven scheme results in accurate SDE solutions in the sense of strong convergence, provided the learning methodology is robust and accurate. With a variant method called the compression-decompression collocation and interpolation technique, we can drastically reduce the number of neural network functions that have to be learned, so that computational speed is enhanced. Numerical results show the high quality strong convergence error results, when using large time steps, and the novel scheme outperforms some classical numerical SDE discretizations. Some applications, here in financial option valuation, are also presented.
96 - Juncai He , Lin Li , Jinchao Xu 2021
We study ReLU deep neural networks (DNNs) by investigating their connections with the hierarchical basis method in finite element methods. First, we show that the approximation schemes of ReLU DNNs for $x^2$ and $xy$ are compositio

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا